【題目】設(shè)橢圓,定義橢圓的“相關(guān)圓”方程為.若拋物線的焦點與橢圓的一個焦點重合,且橢圓短軸的一個端點和其兩個焦點構(gòu)成直角三角形.

(1)求橢圓的方程和“相關(guān)圓”的方程;

(2)過“相關(guān)圓”上任意一點的直線l與橢圓交于兩點.O為坐標(biāo)原點,若,證明原點O到直線的距離是定值,并求的取值范圍.

【答案】(1)橢圓的方程為,“相關(guān)圓”的方程為;(2)詳見解析.

【解析】

(1)由已知條件計算出橢圓的方程和“相關(guān)圓”的方程

2)直線與橢圓相交,聯(lián)立方程組,由求出之間關(guān)系,然后再表示出點到線的距離公式,即可求出結(jié)果

解:(1)因為若拋物線的焦點為與橢圓的一個焦點重合,所以,又因為橢圓短軸的一個端點和其兩個焦點構(gòu)成直角三角形,所以

故橢圓的方程為,“相關(guān)圓”的方程為

(2)設(shè),

聯(lián)立方程組,

,

,

由條件,

所以原點到直線的距離是,

為定值

又圓心到直線的距離為,直線與圓有公共點,滿足條件

,即,∴

,即,所以,即

綜上,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每個國家對退休年齡都有不一樣的規(guī)定,從2018年開始,我國關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對延遲退休的態(tài)度,現(xiàn)從某地市民中隨機(jī)選取100人進(jìn)行調(diào)查,調(diào)查情況如下表:

年齡段(單位:歲)

被調(diào)查的人數(shù)

贊成的人數(shù)

1)從贊成延遲退休的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)若從年齡在的參與調(diào)查的市民中按照是否贊成延遲退休進(jìn)行分層抽樣,從中抽取10人參與某項調(diào)查,然后再從這10人中隨機(jī)抽取4人參加座談會,記這4人中贊成延遲退休的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,若對任意的 aR,存在 [0,2] ,使得成立,則實數(shù)k的最大值是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地實施鄉(xiāng)村振興戰(zhàn)略,對農(nóng)副產(chǎn)品進(jìn)行深加工以提高產(chǎn)品附加值,已知某農(nóng)產(chǎn)品成本為每件3元,加工后的試營銷期間,對該產(chǎn)品的價格與銷售量統(tǒng)計得到如下數(shù)據(jù):

單價x(元)

6

6.2

6.4

6.6

6.8

7

銷量y(萬件)

80

74

73

70

65

58

數(shù)據(jù)顯示單價x與對應(yīng)的銷量y滿足線性相關(guān)關(guān)系.

1)求銷量y(件)關(guān)于單價x(元)的線性回歸方程;

2)根據(jù)銷量y關(guān)于單價x的線性回歸方程,要使加工后收益P最大,應(yīng)將單價定為多少元?(產(chǎn)品收益=銷售收入-成本).

參考公式:==

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點A2,4

1)設(shè)圓Nx軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

2)設(shè)平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;

3)設(shè)點Tt,o)滿足:存在圓M上的兩點PQ,使得,求實數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線與拋物線交于,兩點,且.

(1)求的方程;

(2)試問:在軸的正半軸上是否存在一點,使得的外心在上?若存在,求的坐標(biāo);若不存在,請說明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現(xiàn)。某運營公司為了了解某地區(qū)用戶對其所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了40個用戶,得到用戶的滿意度評分如下:

用戶編號

評分

用戶編號

評分

用戶編號

評分

用戶編號

評分

1

2

3

4

5

6

7

8

9

10

78

73

81

92

95

85

79

84

63

86

11

12

13

14

15

16

17

18

19

20

88

86

95

76

97

78

88

82

76

89

21

22

23

24

25

26

27

28

29

30

79

83

72

74

91

66

80

83

74

82

31

32

33

34

35

36

37

38

39

40

93

78

75

81

84

77

81

76

85

89

用系統(tǒng)抽樣法從40名用戶中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評分?jǐn)?shù)據(jù)為92.

(1)請你列出抽到的10個樣本的評分?jǐn)?shù)據(jù);

(2)計算所抽到的10個樣本的均值和方差;

(3)在(2)條件下,若用戶的滿意度評分在之間,則滿意度等級為“級”。試應(yīng)用樣本估計總體的思想,根據(jù)所抽到的10個樣本,估計該地區(qū)滿意度等級為“級”的用戶所占的百分比是多少?

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)動點P在棱長為1的正方體ABCDA1B1C1D1的對角線BD1上,記λ.當(dāng)∠APC為鈍角時,λ的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)(注意:在試題卷上作答無效

如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DCADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC平面SBC .

)證明:SE=2EB;

求二面角A-DE-C的大小.

查看答案和解析>>

同步練習(xí)冊答案