【題目】小陳同學(xué)進(jìn)行三次定點(diǎn)投籃測(cè)試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為.

(1)求小陳同學(xué)三次投籃至少命中一次的概率;

(2)記小陳同學(xué)三次投籃命中的次數(shù)為隨機(jī)變量,求的概率分布及數(shù)學(xué)期望.

【答案】(1);(2).

【解析】分析:(1)先求小陳同學(xué)三次投籃都沒有命中的概率,再用1減得結(jié)果,(2)先確定隨機(jī)變量取法,再利用組合數(shù)求對(duì)應(yīng)概率,列表得分布列,最后根據(jù)數(shù)學(xué)期望公式求結(jié)果.

詳解:(1)小陳同學(xué)三次投籃都沒有命中的概率為(1-)×(1-)×(1-)=;

所以小陳同學(xué)三次投籃至少命中一次的概率為1-.

(2)ξ可能的取值為0,1,2,3.

P(ξ=0)=;

P(ξ=1)=×(1-)×(1-)+(1-×(1-)+(1-)×(1×;

P(ξ=2)=××××××;P(ξ=3)=××

故隨機(jī)變量ξ的概率分布為

ξ

0

1

2

3

P

所以數(shù)學(xué)期望E(ξ)=0×+1×+2×=+3×

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC外接圓半徑是2, ,則△ABC的面積最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),如果函數(shù)僅有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

2)當(dāng)時(shí),試比較1的大小;

3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn)為圓心的圓被直線截得的弦長(zhǎng)為.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)求過(guò)與圓相切的直線方程;

(3)若軸的動(dòng)點(diǎn),分別切圓,兩點(diǎn).試問(wèn):直線是否恒過(guò)定點(diǎn)?若是,求出恒過(guò)點(diǎn)坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),集合.

(1)當(dāng)時(shí),解不等式;

(2)若,且,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),若函數(shù)的定義域?yàn)?/span>,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天PM2.5的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如表:

組別

PM2.5濃度
(微克/立方米)

頻數(shù)(天)

頻率

第一組

(0,25]

3

0.15

第二組

(25,50]

12

0.6

第三組

(50,75]

3

0.15

第四組

(75,100]

2

0.1


(1)將這20天的測(cè)量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求圖4中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.
(2)將頻率視為概率,對(duì)于2016年的某3天,記這3天中該居民區(qū)PM2.5的24小時(shí)平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+a.
(1)若不等式f(x)≤6的解集為{x|﹣2≤x≤3},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若存在實(shí)數(shù)n使f(n)≤m﹣f(﹣n)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次高中學(xué)科競(jìng)賽中,4000名考生的參賽成績(jī)統(tǒng)計(jì)如圖所示,60分以下視為不及格,若同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表,則下列說(shuō)法中有誤的是(

A. 成績(jī)?cè)?/span>分的考生人數(shù)最多

B. 不及格的考生人數(shù)為1000人

C. 考生競(jìng)賽成績(jī)的平均分約70.5分

D. 考生競(jìng)賽成績(jī)的中位數(shù)為75分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處的切線與圓相切,求的值;

(2)若函數(shù)上存在極值,求的取值范圍;

(3)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案