設等比數(shù)列{an}的公比為q,前n項和為Sn,若Sn+1,Sn,Sn+2成等差數(shù)列,則q的值為   
【答案】分析:首先由Sn+1,Sn,Sn+2成等差數(shù)列,可得2Sn=Sn+1+Sn+2,然后利用等比數(shù)列的求和公式分別表示Sn+1,Sn,Sn+2,注意分q=1和q≠1兩種情況討論,解方程即可.
解答:解:設等比數(shù)列{an}的公比為q,前n項和為Sn,且Sn+1,Sn,Sn+2成等差數(shù)列,則2Sn=Sn+1+Sn+2,
若q=1,則Sn=na1,式顯然不成立,
若q≠1,則為,
故2qn=qn+1+qn+2,
即q2+q-2=0,
因此q=-2.
故答案為-2.
點評:涉及等比數(shù)列求和時,若公比為字母,則需要分類討論.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12、設等比數(shù)列{an}的前n項和為Sn,巳知S10=∫03(1+2x)dx,S20=18,則S30=
21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的前n項和為Sn,若S6:S3=3,則S9:S6=
 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘