【題目】已知,.

(1)若,命題“pq”為真,求實(shí)數(shù)的取值范圍;

(2)若 的必要不充分條件,求實(shí)數(shù)的取值范圍.

【答案】1[4,2);(2 [4,1]

【解析】

1)根據(jù)復(fù)合命題真假關(guān)系進(jìn)行轉(zhuǎn)化求當(dāng)命題“pq”為假時(shí)的范圍即可.

2)根據(jù)必要不充分條件與集合包含關(guān)系進(jìn)行轉(zhuǎn)化求解即可.

1)若m2時(shí),p:﹣4x1,q:﹣1x2

pq為真時(shí),p、q兩個(gè)命題一真一假或兩個(gè)都為真,其對立事件為兩個(gè)都為假,當(dāng)p假且q假時(shí),即x2x<﹣4,

所以pq為真時(shí)﹣4x2,即x的取值范圍為[4,2);

2)若pq的必要不充分條件,則q的解集p的解集,

q時(shí),即m=﹣1時(shí),滿足題意;

q時(shí),當(dāng)m>﹣1時(shí)p:﹣4x1,q:﹣1xm,因?yàn)?/span>q的解集p的解集,所以m1.即-1<m1

當(dāng)m<﹣1時(shí)p:﹣4x1,qmx<﹣1,因?yàn)?/span>q的解集p的解集,所以-1>m≥﹣4

綜上﹣4m1;

綜上,實(shí)數(shù)m的取值范圍為[4,1]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,E是棱PC上的一點(diǎn).

(1)證明:平面平面 .

(2)若,F(xiàn)是PB的中點(diǎn),,,求直線DF與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a是實(shí)數(shù),函數(shù)

1)若,求a的值及曲線在點(diǎn)處的切線方程;

2)討論函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若函數(shù) 在區(qū)間 內(nèi)恰有兩個(gè)零點(diǎn),求 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 (a>b>0)的左焦點(diǎn)為F上頂點(diǎn)為B. 已知橢圓的離心率為,點(diǎn)A的坐標(biāo)為.

I)求橢圓的方程;

II)設(shè)直線l 與橢圓在第一象限的交點(diǎn)為P,l與直線AB交于點(diǎn)Q. (O為原點(diǎn)) ,k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

1)討論函數(shù)上的單調(diào)性;

2)若,當(dāng)時(shí),,且有唯一零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為擔(dān)任班主任的教師辦理手機(jī)語音月卡套餐,為了解通話時(shí)長,采用隨機(jī)抽樣的方法,得到該校100位班主任每人的月平均通話時(shí)長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.

(1)求圖中的值;

(2)估計(jì)該校擔(dān)任班主任的教師月平均通話時(shí)長的中位數(shù);

(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓及直線.

(1)證明:不論取什么實(shí)數(shù),直線與圓C總相交;

(2)求直線被圓C截得的弦長的最小值及此時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,且

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和;

3)若,求證

查看答案和解析>>

同步練習(xí)冊答案