已知三棱錐O-ABC,OA=5,OB=4,OC=3,∠AOB=∠BOC=60°,∠COA=90°,M、N分別是棱OA、BC的中點,則MN=
42
2
42
2
分析:取AB中點E,連結(jié)EN,ME,MC,計算MB,MC,BC,利用“平行四邊形中對角線的平方和等于四條邊的平方和”,可得結(jié)論.
解答:解:OA=5,OC=3,∠COA=90°,由勾股定理,AC=
34

取AB中點E,連結(jié)EN,ME,MC,
則ME和EN分別是三角形AOB和三角形ABC中位線,ME=2,EN=
34
2

在三角形OBM中,根據(jù)余弦定理,MB=
16+
25
4
-2•
5
2
•4•
1
2
=
7
2

在三角形OMC中,根據(jù)勾股定理,MC=
25
4
+9
=
61
2

在三角形OBC中,根據(jù)余弦定理,BC=
9+16-2•3•4•
1
2
=
13

在三角形MBC中,根據(jù)“平行四邊形中對角線的平方和等于四條邊的平方和”,可得4MN2+13=2(
49
4
+
61
4
)

∴MN=
42
2
點評:本題考查三棱錐,考查余弦定理的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐O-ABC中,OA、OB、OC兩兩互相垂直,OC=1,OA=x,OB=y,若x+y=4,則三棱錐O-ABC體積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知三棱錐O-ABC中,
OA
=
a
,
OB
=
b
,
OC
=
c
,點M在OA上,且OM=2MA,N為BC中點,則
MN
=
1
2
(
c
-
a
-
b
)
1
2
(
c
-
a
-
b
)
(結(jié)果用
a
,
b
,
c
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,D是BC的中點,E是OC的中點.
(Ⅰ) 求證:BC⊥平面OAD;
(Ⅱ) 求O點到面ABC的距離;
(Ⅲ)求異面直線BE與AC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•月湖區(qū)模擬)已知三棱錐O-ABC,OA、OB、OC兩兩垂直且長度均為6,長為2的線段MN的一個端點M在棱OA上運動,另一個端點N在△OBC內(nèi)運動(含邊界),則MN的中點P的軌跡與三棱錐的面OAB、OBC、OAC圍成的幾何體的體積為
π
6
π
6

查看答案和解析>>

同步練習(xí)冊答案