定義在上的函數(shù)同時滿足以下條件:

上是減函數(shù),在上是增函數(shù); ② 是偶函數(shù);

處的切線與直線垂直.

(1)求函數(shù)的解析式;

(2)設(shè),若存在,使,求實數(shù)的取值范圍

 

【答案】

(1)

(2)

【解析】(1)要求a,b,c.需要根據(jù)條件建立三個關(guān)于a,b,c的方程,恒成立,,得到三個方程解方程組可求出a,b,c的值。

(2),若存在,使轉(zhuǎn)化為:若存在,使,即存在,使.然后設(shè),利用導(dǎo)數(shù)求出其最大值即可。

解:(1)

上是減函數(shù),在上是增函數(shù),

,           ()   ……………………1分

是偶函數(shù)得:,                 …………………2分

處的切線與直線垂直,,                          ……………………3分

代入()得:.    …………………4分

(2)由已知得:若存在,使,即存在,使.

設(shè)

,                …………………6分

=0,∵,∴,       …………………7分

當(dāng)時,,∴上為減函數(shù),

當(dāng)時,,∴上為增函數(shù),

上有最大值.                 ……………………9分

,∴最小值為. … 11分

于是有為所求.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)已知定義在上的函數(shù)同時滿足:①對任意,都有②當(dāng)時,,試解決下列問題:   (Ⅰ)求在時,的表達式;(Ⅱ)若關(guān)于的方程上有實數(shù)解,求實數(shù)的取值范圍;(Ⅲ)若對任意,關(guān)于的不等式都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在上的函數(shù)同時滿足以下條件:

上是減函數(shù),在上是增函數(shù);②是偶函數(shù);

處的切線與直線垂直.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)設(shè),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年遼寧省五校協(xié)作體高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

定義在上的函數(shù)同時滿足以下條件:

(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);

是偶函數(shù);

x0處的切線與直線yx2垂直.

(1)求函數(shù)的解析式;

(2)設(shè)g(x),若存在實數(shù)x[1,e],使<,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三第三階段(12月)文科考試數(shù)學(xué)試卷(解析版) 題型:解答題

(滿分14分) 定義在上的函數(shù)同時滿足以下條件:

上是減函數(shù),在上是增函數(shù);②是偶函數(shù);

處的切線與直線垂直.

(1)求函數(shù)的解析式;

(2)設(shè),求函數(shù)上的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省淮北市高三4月第二次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

定義在上的函數(shù)同時滿足以下條件:

上是減函數(shù),在上是增函數(shù);② 是偶函數(shù);③ 處的切線與直線垂直.

(1)求函數(shù)的解析式;

(2)設(shè),若存在,使,求實數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案