已知雙曲線的兩個焦點為

  (1)求雙曲線C的方程;

  (2)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程.

 

【答案】

(1);(2).

【解析】(1) 第一問比較簡單.直接根據(jù)方程確定即可,也可根據(jù)定義先求出a也可.

(2)本題涉及到直線與雙曲線的位置關(guān)系,△OEF的面積為,然后把直線方程與雙曲線方程聯(lián)立消y,借助韋達定理即可.

 (Ⅰ)由已知及點在雙曲線上得

      解得

所以,雙曲線的方程為.

(Ⅱ)由題意直線的斜率存在,故設(shè)直線的方程為

  得

設(shè)直線與雙曲線交于、,則是上方程的兩不等實根,

      ①

這時

 即        

所以     即

       適合①式

所以,直線的方程為.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點為F1(-
5
,0)、F2
5
,0),P是此雙曲線上的一點,且PF1⊥PF2,|PF1|•|PF2|=2,則該雙曲線的方程是( 。
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點是橢圓
x2
100
+
y2
64
=1
的兩個頂點,雙曲線的兩條準線經(jīng)過橢圓的兩個焦點,則此雙曲線的方程是(  )
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點為橢圓
x2
16
+
y2
7
=1
的長軸的端點,其準線過橢圓的焦點,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點為F1(-
5
,0)
,F2(
5
,0)
,P是此雙曲線上的一點,且PF1⊥PF2,|PF1|•|PF2|=2,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點F1(-
10
,0),F(xiàn)2
10
,0),M是此雙曲線上的一點,|
MF1
|-|
MF2
|=6,則雙曲線的方程為
x2
9
-y2=1
x2
9
-y2=1

查看答案和解析>>

同步練習(xí)冊答案