【題目】已知拋物線的焦點為,點在拋物線上,且。
(Ⅰ)求拋物線的標準方程及實數的值;
(Ⅱ)直線過拋物線的焦點,且與拋物線交于兩點,若(為坐標原點)的面積為,求直線的方程.
科目:高中數學 來源: 題型:
【題目】已知直線l1的方程為3x+4y﹣12=0.
(1)若直線l2與l1平行,且過點(﹣1,3),求直線l2的方程;
(2)若直線l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4,求直線l2的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M: 及其上一點A(2,4)
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;
(3)設點T(t,o)滿足:存在圓M上的兩點P和Q,使得,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,動點滿足成等差數列。
(1)求點的軌跡方程;
(2)對于軸上的點,若滿足,則稱點為點對應的“比例點”,問:對任意一個確定的點,它總能對應幾個“比例點”?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線l:ax+ y﹣1=0與x,y軸的交點分別為A,B,直線l與圓O:x2+y2=1的交點為C,D.給出下列命題:p:a>0,S△AOB= ,q:a>0,|AB|<|CD|.則下面命題正確的是( )
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數().
(1)當時,求函數在上的最大值和最小值;
(2)當時,是否存在正實數,當(是自然對數底數)時,函數的最小值是3,若存在,求出的值;若不存在,說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近幾年,京津冀等地數城市指數“爆表”,尤其2015年污染最重.為了探究車流量與PM2.5的濃度是否相關,現采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量x(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散點圖知y與x具有線性相關關系,求y關于x的線性回歸方程;
(Ⅱ)(。├茫á瘢┧蟮幕貧w方程,預測該市車流量為8萬輛時PM2.5的濃度;
(ⅱ)規(guī)定:當一天內PM2.5的濃度平均值在(0,50]內,空氣質量等級為優(yōu);當一天內PM2.5的濃度平均值在(50,100]內,空氣質量等級為良.為使該市某日空氣質量為優(yōu)或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數.)
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com