對(duì)于正項(xiàng)數(shù)列{an},定義Hn=為{an}的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為Hn=,則數(shù)列{an}的通項(xiàng)公式為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān) Word版訓(xùn)練3-x3練習(xí)卷(解析版) 題型:選擇題
直線x+(a2+1)y+1=0的傾斜角的取值范圍是( ).
A. B. C. ∪ D. ∪
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)6練習(xí)卷(解析版) 題型:選擇題
已知點(diǎn)M(,0),橢圓+y2=1與直線y=k(x+)交于點(diǎn)A、B,則△ABM的周長為( ).
A.4 B.8 C.12 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)5練習(xí)卷(解析版) 題型:選擇題
如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn).那么異面直線OE和FD1所成的角的余弦值等于 ( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)4練習(xí)卷(解析版) 題型:解答題
已知單調(diào)遞增的等比數(shù)列{an}滿足:
a2+a3+a4=28,且a3+2是a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)4練習(xí)卷(解析版) 題型:選擇題
已知等比數(shù)列{an}的公比為q,記bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),則以下結(jié)論一定正確的是( ).
A.?dāng)?shù)列{bn}為等差數(shù)列,公差為qm
B.?dāng)?shù)列{bn}為等比數(shù)列,公比為q2m
C.?dāng)?shù)列{cn}為等比數(shù)列,公比為qm2
D.?dāng)?shù)列{cn}為等比數(shù)列,公比為qmn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)4練習(xí)卷(解析版) 題型:選擇題
公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a3a11=16,則a5=( )
A.1 B.2 C.4 D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)3練習(xí)卷(解析版) 題型:選擇題
若=,則tan2α=( ).
A.- B. C.- D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練9練習(xí)卷(解析版) 題型:填空題
設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=(-1)nan-,n∈N*,則:
(1)a3=________;
(2)S1+S2+…+S100=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com