【題目】已知函數(shù)

(1)若曲線處的切線過點

求實數(shù)的值;

設(shè)函數(shù),當(dāng)時,試比較的大;

(2)若函數(shù)有兩個極值點,),求證:

【答案】(1);②見解析;(2)見解析.

【解析】分析:(1)①求出函數(shù)的導(dǎo)數(shù),得到切點,表示出切線方程,代入切點的坐標(biāo)即可求解;

,設(shè) ,利用導(dǎo)數(shù)得到函數(shù)的單調(diào)性和最值,即可得到結(jié)論

(2)設(shè)通過討論的范圍,得到函數(shù)的單調(diào)性,根據(jù) 得到,進而得到,設(shè),得到單調(diào)減函數(shù),即可作出證明

詳解:(1)①因為,所以,

由曲線處的切點為,

所以在處的切線方程為

因為切線過點所以

,

設(shè)),所以,

所以為減函數(shù)

因為,所以當(dāng)時,有,則;當(dāng)時,有,則;

當(dāng)時,有,則

(2)由題意,有兩個不等實根,).

設(shè),則),

當(dāng)時,,所以上是增函數(shù),不符合題意;

當(dāng)時,由,得

列表如下:

0

極大值

由題意,

,解得,所以,

因為,所以

因為,所以,

所以).

),

因為,所以上為減函數(shù),

所以,即

所以,命題得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的上、下焦點分別為F1 , F2 , 點D在橢圓上,DF2⊥F1F2 , △F1F2D的面積為2 ,離心率e= ,拋物線C:x2=2py(p>0)的準(zhǔn)線l經(jīng)過D點.
(1)求橢圓E與拋物線C的方程;
(2)過直線l上的動點P作拋物線的兩條切線,切點為A,B,直線AB交橢圓于M,N兩點,當(dāng)坐標(biāo)原點O落在以MN為直徑的圓外時,求點P的橫坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C是單位圓上三個互不相同的點.若 ,則 的最小值是(
A.0
B.-
C.-
D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)用這六個數(shù)字,可以組成多少個分別符合下

列條件的無重復(fù)數(shù)字的四位數(shù):(1)奇數(shù);(2)偶數(shù);(3)大于的數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣x2﹣ax.
(1)若曲線y=f(x)在點x=0處的切線斜率為1,求函數(shù)f(x)在[0,1]上的最值;
(2)令g(x)=f(x)+ (x2﹣a2),若x≥0時,g(x)≥0恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)a=0且x>0時,證明f(x)﹣ex≥xlnx﹣x2﹣x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 的圖象向右平移 個單位,再把所有點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),得函數(shù)y=g(x)的圖象,則g(x)圖象的一個對稱中心為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖的程序框圖,若運行此程序,則輸出S的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= . (I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若不等式f(x)> 恒成立,求整數(shù)k的最大值;
(III)求證:(1+1×2)(1+2×3)…(1+n(n×1))>e2n﹣3(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為Aa,b,c,且滿足 =
(1)若4sinC=c2sinB,求△ABC的面積;
(2)若 + =4,求a的最小值.

查看答案和解析>>

同步練習(xí)冊答案