【題目】如圖,在直三棱柱中, 分別是的中點(diǎn).
(1)求證: 平面;
(2)若三棱柱的體積為4,求異面直線與夾角的余弦值.
【答案】(1)證明見(jiàn)解析;(2) .
【解析】試題分析: 連接,可得,由矩形性質(zhì),得過(guò)的中點(diǎn),由中位線性質(zhì),得,又平面平面,得證平面求出的面積,根據(jù)三棱柱體積為求得的值,由知, 即為異面直線與的夾角(或補(bǔ)角),從而求得異面直線與夾角的余弦值
解析:(1)如圖,連接,因?yàn)樵撊庵侵比庵,所?/span>,
則四邊形為矩形.
由矩形性質(zhì),得過(guò)的中點(diǎn).
在中,由中位線性質(zhì),得,
又平面平面,
所以平面.
(2)因?yàn)?/span>,所以,
故,
又三棱柱體積為4.
所以,即
由(1)知, ,
則即為異面直線與的夾角(或補(bǔ)角).
在中, ,
所以,
即異面直線與夾角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐的底面ABCD是邊長(zhǎng)為a的菱形,面ABCD,,E,F分別是CD,PC的中點(diǎn).
(1)求證:平面平面PAB;
(2)M是PB上的動(dòng)點(diǎn),EM與平面PAB所成的最大角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A,B是R中兩個(gè)子集,對(duì)于,定義: .①若;則對(duì)任意;②若對(duì)任意,則;③若對(duì)任意,則A,B的關(guān)系為.上述命題正確的序號(hào)是______. (請(qǐng)?zhí)顚?xiě)所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】標(biāo)號(hào)為0到9的10瓶礦泉水.
(1)從中取4瓶,恰有2瓶上的數(shù)字相鄰的取法有多少種?
(2)把10個(gè)空礦泉水瓶掛成如下4列的形式,作為射擊的靶子,規(guī)定每次只能射擊每列最下面的一個(gè)(射中后這個(gè)空瓶會(huì)掉到地下),把10個(gè)礦泉水瓶全部擊中有幾種不同的射擊方案?
(3)把擊中后的礦泉水瓶分送給A、B、C三名垃圾回收人員,每個(gè)瓶子1角錢.垃圾回收人員賣掉瓶子后有幾種不同的收入結(jié)果?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開(kāi)始,不分文理科;2020年開(kāi)始,高考總成績(jī)由語(yǔ)數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績(jī)從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).
某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績(jī)?cè)趨^(qū)間(47,86)的人數(shù);
(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開(kāi)始,不分文理科;2020年開(kāi)始,高考總成績(jī)由語(yǔ)數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績(jī)從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).
某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績(jī)?cè)趨^(qū)間(47,86)的人數(shù);
(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓,把圓上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到曲線,且傾斜角為,經(jīng)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn).
(1)當(dāng)時(shí),求曲線的普通方程與直線的參數(shù)方程;
(2)求點(diǎn)到兩點(diǎn)的距離之積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,討論的單調(diào)性;
(2)若,且對(duì)于函數(shù)的圖象上兩點(diǎn), ,存在,使得函數(shù)的圖象在處的切線.求證;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若a=0時(shí),求函數(shù)的零點(diǎn);
(2)若a=4時(shí),求函數(shù)在區(qū)間[2,5]上的最大值和最小值;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com