(2012•孝感模擬)已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點(diǎn)A(1,f(1)),B(2,f(2)),C(3,f(3)),△ABC的外接圓圓心為D,且
DA
+
DC
DB
(γ∈R),則滿足條件的函數(shù)f(x)有( 。
分析:根據(jù)題意,分析可得△ABC是等腰三角形,且BA=BC,必有f(1)=f(3),f(1)≠f(2),進(jìn)而分類討論f(1)=1=f(3)時(shí)f(2)=2、3、4,三種情況,由分類加法原理,計(jì)算可得答案.
解答:解:由
DA
+
DC
DB
(γ∈R),分析可得△ABC是等腰三角形,且BA=BC,必有f(1)=f(3),f(1)≠f(2);
點(diǎn)A(1,f(1))、當(dāng)f(1)=1=f(3)時(shí)f(2)=2、3、4,三種情況.
f(1)=f(3)=2;f(2)=1、3、4,有三種.
f(1)=f(3)=3;f(2)=2、1、4,有三種.
f(1)=f(3)=4;f(2)=2、3、1,有三種.
因而滿足條件的函數(shù)f(x)有12種.
故選C.
點(diǎn)評:本題考查分類計(jì)數(shù)原理的應(yīng)用,涉及向量加法的意義和函數(shù)的定義,關(guān)鍵是正確理解函數(shù)f(x)的意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•孝感模擬)已知cos(α+
π
6
)-sinα=
2
3
3
,則sin(α-
6
)的值是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•孝感模擬)某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本0.5萬元,此外每生產(chǎn)1百件這樣的產(chǎn)品,還需增加投入0.25萬元,經(jīng)市場調(diào)查知這種產(chǎn)品年需求量為5百件,產(chǎn)品銷售數(shù)量為t(百件)時(shí),銷售所得的收入為(5t-
12
t2)
萬元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為x百件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤關(guān)于當(dāng)年產(chǎn)量x的函數(shù)為f(x),求f(x).
(2)當(dāng)該公司的年產(chǎn)量為多少件時(shí),當(dāng)年所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•孝感模擬)在△ABC中,∠A=90°,且
AB
BC
=-1,則邊AB的長為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•孝感模擬)如圖,在A、B間有四個(gè)焊接點(diǎn),若焊接點(diǎn)脫落,而可能導(dǎo)致電路不通,如今發(fā)現(xiàn)A、B之間線路不通,則焊接點(diǎn)脫落的不同情況有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•孝感模擬)某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個(gè)分?jǐn)?shù)段[40,50),[50,60),…,[90,100],畫出如右圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
(I )求7O~80分?jǐn)?shù)段的學(xué)生人數(shù);
(II)估計(jì)這次考試中該學(xué)科的優(yōu)分率(80分及以上為優(yōu)分);
(III)現(xiàn)根據(jù)本次考試分?jǐn)?shù)分成的六段(從低分段到高分段依次為第一組、第二組、…、第六組),為提高本班數(shù)學(xué)整體成績,決定組與組之間進(jìn)行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差大于30分(以分?jǐn)?shù)段為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù)),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

查看答案和解析>>

同步練習(xí)冊答案