(本小題14分)
在平面直角坐標(biāo)系xoy中,給定三點,點P到直線BC的距離是該點到直線AB,AC距離的等比中項。
(Ⅰ)求點P的軌跡方程;
(Ⅱ)若直線L經(jīng)過的內(nèi)心(設(shè)為D),且與P點的軌跡恰好有3個公共點,求L的斜率k的取值范圍。
解:(Ⅰ)直線AB、AC、BC的方程依次為。點到AB、AC、BC的距離依次為。依設(shè),,即,化簡得點P的軌跡方程為
圓S:    ………5分
(Ⅱ)由前知,點P的軌跡包含兩部分
圓S:                         ①
與雙曲線T:            ②
的內(nèi)心D也是適合題設(shè)條件的點,由,解得,且知它在圓S上。直線L經(jīng)過D,且與點P的軌跡有3個公共點,所以,L的斜率存在,設(shè)L的方程為
                 ③
(i)當(dāng)k=0時,L與圓S相切,有唯一的公共點D;此時,直線平行于x軸,表明L與雙曲線有不同于D的兩個公共點,所以L恰好與點P的軌跡有3個公共點。
…………8分
(ii)當(dāng)時,L與圓S有兩個不同的交點。這時,L與點P的軌跡恰有3個公共點只能有兩種情況:
情況1:直線L經(jīng)過點B或點C,此時L的斜率,直線L的方程為。代入方程②得,解得。表明直線BD與曲線T有2個交點B、E;直線CD與曲線T有2個交點C、F。
故當(dāng)時,L恰好與點P的軌跡有3個公共點。                                          …………11分
情況2:直線L不經(jīng)過點B和C(即),因為L與S有兩個不同的交點,所以L與雙曲線T有且只有一個公共點。即方程組有且只有一組實數(shù)解,消去y并化簡得
該方程有唯一實數(shù)解的充要條件是                       ④
                                                ⑤
解方程④得,解方程⑤得。
綜合得直線L的斜率k的取值范圍。            ………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與橢圓共焦點,且過點(-2,)的雙曲線方程為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本題滿分12分)
在直角坐標(biāo)平面內(nèi),已知點,動點滿足 .
(1)求動點的軌跡的方程;
(2)過點作直線與軌跡交于兩點,線段的中點為,軌跡的右端點為點N,求直線MN的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
已知動圓過定點,且與定直線相切.
(1)求動圓圓心的軌跡的方程;
(2)若是軌跡的動弦,且, 分別以為切點作軌跡的切線,設(shè)兩切線交點為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線L過點且與雙曲線有且僅有一個公共點,則這樣的直
線有(   )
A.1 條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點C到定點的距離比到直線的距離少1,
(1)求動點的軌跡的方程;
(2)設(shè)A、B是軌跡上異于原點的兩個不同點,直線的傾斜角分別為,
當(dāng)變化且時,證明直線恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)為拋物線的焦點,與拋物線相切于點的直線軸的交點為,則_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

當(dāng)為任意實數(shù)時,直線恒過定點,則點坐標(biāo)為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線與拋物線,當(dāng)直線開始在平面上繞點按逆時針方向勻速旋轉(zhuǎn)(旋轉(zhuǎn)的角度不超過)時,它掃過的面積是時間的函數(shù),則函數(shù)圖象大致是

查看答案和解析>>

同步練習(xí)冊答案