精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

已知圓和直線.

(Ⅰ)求的參數方程以及圓上距離直線最遠的點坐標;

(Ⅱ)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,將圓上除點以外所有點繞著逆時針旋轉得到曲線,求曲線的極坐標方程.

【答案】(1)(2)

【解析】試題分析:(Ⅰ)根據可得圓的參數方程,由直線的位置可得當時,圓上的點距離直線最遠,即可得點坐標;(Ⅱ)得的極坐標方程為,該變換為,由相關點法可得結果.

試題解析:(Ⅰ) 的參數方程為為參數,

易得直線與圓均過坐標原點,且直線的傾斜角為

所以當時,圓上的點距離直線最遠,

所以點的坐標為.

(Ⅱ)由 可得的極坐標方程為,

上除極點外的某一點的極坐標為,旋轉后成為

由相關點法,回代入,

可得的極坐標方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若二次函數f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)設g(x)=f(2x),求g(x)在[﹣3,0]的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C與x軸相切,圓心C在射線3x﹣y=0(x>0)上,直線x﹣y=0被圓C截得的弦長為2
(1)求圓C標準方程;
(2)若點Q在直線l1:x+y+1=0上,經過點Q直線l2與圓C相切于p點,求|QP|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=logax,g(x)=loga(2x+t﹣2)2 , (a>0,a≠1,t∈R).
(1)當t=4,x∈[1,2]時F(x)=g(x)﹣f(x)有最小值為2,求a的值;
(2)當0<a<1,x∈[1,2]時,有f(x)≥g(x)恒成立,求實數t的取值范圍.
(備注:函數y=x+ 在區(qū)間(0,1)上單調遞減,在區(qū)間(1,+∞)上單調遞增).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在定義域內既是奇函數又是減函數的是(
A.y=
B.y=﹣x+
C.y=﹣x|x|
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為R的函數f(x)= 是奇函數.
(1)求b的值;
(2)判斷函數f(x)在R上的單調性并加以證明;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線x+ay﹣1=0是圓C:x2+y2﹣4x﹣2y+1=0的對稱軸,過點A(﹣4,a)作圓C的一條切線,切點為B,則|AB|=(
A.2
B.6
C.4
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于x的不等式ax2+2x+b>0(a≠0)的解集為 ,且a>b,則 的最小值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知直二面角α﹣AB﹣β,P∈α,Q∈β,PQ與平面α,β所成的角都為30°,PQ=4,PC⊥AB,C為垂足,QD⊥AB,D為垂足,求:
(1)直線PQ與CD所成角的大小
(2)四面體PCDQ的體積.

查看答案和解析>>

同步練習冊答案