【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26,數(shù)列{an}的前n項(xiàng)和為Sn .
(Ⅰ)求an;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】解:(I)設(shè)等差數(shù)列{an}的公差為d,∵a3=7,a5+a7=26,∴a1+2d=7,2a1+10d=26,解得a1=3,d=2.
∴an=3+2(n﹣1)=2n+1.
(Ⅱ)由(I)可得:Sn= =n2+2n.
bn= = = ,
∴數(shù)列{bn}的前n項(xiàng)和Tn= + +…+ +
=
= ﹣
【解析】(I)設(shè)等差數(shù)列{an}的公差為d,由a3=7,a5+a7=26,可得a1+2d=7,2a1+10d=26,解得a1 , d.即可得出.(Ⅱ)由(I)可得:Sn= =n2+2n.bn= = = ,再利用“裂項(xiàng)求和”即可得出.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題中
① 非零向量滿足,則的夾角為;
②
>0是的夾角為銳角的充要條件;
③若則必定是直角三角形;
④△ABC的外接圓的圓心為O,半徑為1,若,且,則向量在向量方向上的投影為.
以上命題正確的是 __________ (注:把你認(rèn)為正確的命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.
(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), ……).
(1)令,求的單調(diào)區(qū)間;
(2)已知在處取得極小值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(1)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線交曲線于, 兩點(diǎn),交曲線于, 兩點(diǎn),求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系中, 為極點(diǎn),半徑為2的圓的圓心坐標(biāo)為.
(1)求圓的極坐標(biāo)方程;
(2)設(shè)直角坐標(biāo)系的原點(diǎn)與極點(diǎn)重合, 軸非負(fù)關(guān)軸與極軸重合,直線的參數(shù)方程為(為參數(shù)),由直線上的點(diǎn)向圓引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在三棱錐A﹣BCD中,AB=CD,且點(diǎn)M,N分別是BC,AD的中點(diǎn).若直線AB⊥CD,則直線AB與MN所成的角為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知n為正整數(shù),數(shù)列{an}滿足an>0, ,設(shè)數(shù)列{bn}滿足
(1)求證:數(shù)列 為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實(shí)數(shù)t的值;
(3)若數(shù)列{bn}是等差數(shù)列,前n項(xiàng)和為Sn , 對任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐S﹣ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動(dòng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論中恒成立的個(gè)數(shù)為( )
(1)EP⊥AC;
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com