精英家教網 > 高中數學 > 題目詳情
設拋物線y=
1
4
x2
的焦點為F,M為拋物線上異于頂點的一點,且M在準線上的射影為點M′,則在△MM′F的重心、外心和垂心中,有可能仍在此拋物線上的有( 。
A.0個B.1個C.2個D.3個
△MM′F的外心一定不在拋物線上,
因為外心到三個頂點的距離相等,外心為C,CM大于C到準線的距離,C不滿足拋物線的定義;
△MM′F的垂心為O也可能在拋物線上,
因為MF=MM′,當三角形FMM'為等腰直角三角形時,垂心與M重合,垂心在拋物線上;
△MM′F的重心為O,也不在拋物線上,
因為MF=MM′,重心在∠MFM′的平分線上,因而有FO=OM,OM大于O到準線的距離,
不滿足拋物線的定義;
故選B.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓經過點,離心率為,左右焦點分別為.

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,與以為直徑的圓交于兩點,且滿足,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設拋物線y2=2px(p>0)上各點到直線3x+4y+12=0的距離的最小值為1,則p=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過拋物線y2=8x的焦點作傾斜角45°的直線,則被拋物線截得的弦長為( 。
A.8B.16C.32D.64

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知定點A(-3,0),B(3,0),動點P在拋物線y2=2x上的移動,則
PA
PB
的最小值等于______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,F(xiàn)為拋物線y2=2px的焦點,A(4,2)為拋物線內一定點,P為拋物線上一動點,且|PA|+|PF|的最小值為8.
(1)求該拋物線的方程;
(2)如果過F的直線l交拋物線于M、N兩點,且|MN|≥32,求直線l的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知動點A、B分別在圖中拋物線y2=4x及橢圓
x2
4
+
y2
3
=1
的實線上運動,若ABx,點N的坐標為(1,0),則三角形ABN的周長l的取值范圍是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過拋物線y2=4x的焦點且與直線y=2x+1平行的直線方程是( 。
A.y=-
1
2
x+1
B.y=-
1
2
x+
1
2
C.y=2x-4D.y=2x-2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

拋物線有光學性質:由其焦點射出的光線經拋物線反象后,沿平行于拋物線對稱軸的肖向射出,反之亦然.如圖所示,今有拋物線C,其頂點是坐標原點,對稱輔為x軸.開口向右.一光源在點M處,由其發(fā)出一條平行于x軸的光線射向拋物線C卜的點P(4.4),經拋物線C反射后,反射光線經過焦點F后射向拋物線C上的點Q,再經拋物線C反射后又沿平行于X軸的方向射出,途中經直線l:2x-4y-17=0上點N反射后又射回點M.
(1)求拋物線C的方程;
(2)求PQ的長度;
(3)判斷四邊形MPQN是否為平行四邊形,若是請給出證明,若不是請說明理由.

查看答案和解析>>

同步練習冊答案