數(shù)列
1
1+2
1
1+2+3
,…
1
1+2+…+n
的前n項(xiàng)和為( 。
A.
n
n+1
B.
2n
n+1
C.
n
n+2
D.
n
2(n+1)
由數(shù)列可知數(shù)列的通項(xiàng)公式an=
1
1+2+…+(n+1)
=
1
(n+1)(n+2)
2
=
2
(n+1)(n+2)
=2(
1
n+1
-
1
n+2
)

∴數(shù)列的前n項(xiàng)和S=2(
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
)=2(
1
2
-
1
n+2
)=
n
n+2
,
故選:C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2009恩城中學(xué))觀察下面由奇數(shù)組成的數(shù)陣,回答下列問題:
⑴求第六行的第一個(gè)數(shù);
⑵求第20行的第一個(gè)數(shù);
⑶求第20行的所有數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的滿足a1=3,an-3an-1=-3n(n≥2).
(1)求證:數(shù)列{
an
3n
}
是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}是有窮等差數(shù)列,給出下面數(shù)表:
a1 a2a3 …an-1  an第1行
a1+a2 a2+a3 …an-1+an 第2行


…第n行
上表共有n行,其中第1行的n個(gè)數(shù)為a1,a2,a3…an,從第二行起,每行中的每一個(gè)數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為b1,b2,b3…bn
(1)求證:數(shù)列b1,b2,b3…bn成等比數(shù)列;
(2)若ak=2k-1(k=1,2,…,n),求和
n
k=1
akbk

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在面積為1的正△A1B1C1內(nèi)作正△A2B2C2,使
A1A2
=2
A2B1
B1B2
=2
B2C1
,
C1C2
=2
C2A1
,依此類推,在正△A2B2C2內(nèi)再作正△A3B3C3,….記正△AiBiCi的面積為ai(i=1,2,…,n),則a1+a2+…+an=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的各項(xiàng)均是正數(shù),其前n項(xiàng)和為Sn,滿足Sn=4-an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
2-log2an
(n∈N*),數(shù)列{bnbn+2}的前n項(xiàng)和為Tn,求證:Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an},Sn是其n前項(xiàng)的和,且滿足3an=2Sn+n(n∈N*
(1)求證:數(shù)列{an+
1
2
}為等比數(shù)列;
(2)記Tn=S1+S2+L+Sn,求Tn的表達(dá)式;
(3)記Cn=
2
3
(an+
1
2
),求數(shù)列{nCn}的前n項(xiàng)和Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)命題p:方程x2+mx+1=0有實(shí)根,命題q:數(shù)列{
1
n(n+1)
}
的前n項(xiàng)和為Sn,對(duì)?n∈N*恒有m≤Sn,若p或q為真,p且q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等比數(shù)列的首項(xiàng),公比是最小的正整數(shù),則數(shù)列的前項(xiàng)的和為
            B              C             D 

查看答案和解析>>

同步練習(xí)冊(cè)答案