A
分析:由已知,f′(x)=3x2≥0在[1,+∞)上恒成立,可以利用參數(shù)分離的方法求出參數(shù)a的取值范圍.
解答:f′(x)=3x2+a,根據(jù)函數(shù)導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系,f′(x)≥0在[1,+∞)上恒成立,即a≥-3x2,恒成立,只需a大于-3x2 的最大值即可,而-3x2 在[1,+∞)上的最大值為-3,所以a≥-3.即數(shù)a的取值范圍是[-3,+∞).
故選A.
點評:本題考查函數(shù)導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系,參數(shù)取值范圍求解.本題采用了參數(shù)分離的方法.