【題目】已知四邊形是梯形(如圖1),,,,,E為的中點,以為折痕把折起,使點D到達(dá)點P的位置(如圖2),且.
(1)求證:平面平面;
(2)求點C到平面的距離.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點M,連接,,,根據(jù),易得,再利用平面幾何知識,由,得到,利用線面垂直的判定定理得到平面,進而由面面垂直的判定定理得證.
(2)由(1)知,平面,為正三角形且邊長為1, 設(shè)點C到平面的距離為d,由等體積法求解.
(1)證明:連接,
因為,,,E為的中點,,
所以四邊形是邊長為1的正方形,且.
如圖,取的中點M,連接,,,
因為,
所以,且,.
因為,
所以.
所以
因為,,,
所以,
所以.
因為,
所以平面.
因為平面,
所以平面平面.
(2)由(1)知,平面,,且.
因為,
所以為正三角形且邊長為1.
設(shè)點C到平面的距離為d,
則,
所以,
即,
解得.
所以點C到平面的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是矩形,平面平面,,且,點為的中點.
(1)證明:平面平面;
(2)若直線和平面所成的角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒(SARS-COV-2)是2019年在人體中發(fā)現(xiàn)的冠狀病毒新毒株,主要通過呼吸道飛沫進行傳播,鑒于其特殊的傳播途徑,某科學(xué)醫(yī)療機構(gòu)發(fā)現(xiàn)一次性醫(yī)用口罩起著一定的防護作用一般,口罩在投入市場前需做一系列的檢測,其中罩體污點、鼻梁條缺陷、耳繩異常等常規(guī)瑕疵肉眼可見,而耳繩尤為關(guān)鍵,會出現(xiàn)耳繩缺失、錯位、錯熔、漏熔四種情況 .現(xiàn)在生產(chǎn)商大多采用全自動生產(chǎn)線生產(chǎn)口罩,某工廠現(xiàn)有甲(1臺本體機拖2臺耳帶機)和乙(1臺本體機拖3臺耳帶機)兩條生產(chǎn)線,已知甲生產(chǎn)線的日產(chǎn)量為7萬只,乙生產(chǎn)線的日產(chǎn)量為10萬只,生產(chǎn)商為了了解是否有必要更換原有的甲生產(chǎn)線,在設(shè)備生產(chǎn)狀況相同,不計其他影響的狀態(tài)下,分別統(tǒng)計了兩條生產(chǎn)線生產(chǎn)的1000只口罩的耳繩情況,得到的統(tǒng)計數(shù)據(jù)如下:
耳繩情況 | 合格 | 缺失 | 錯位 | 錯熔 | 漏熔 |
甲生產(chǎn)線 | 950 | 9 | 19 | 11 | 11 |
乙生產(chǎn)線 | 900 | 19 | 35 | 25 | 21 |
(1)從乙生產(chǎn)線生產(chǎn)的1000只口罩中隨機抽取3只,將合格品的只數(shù)記為,求的分布列和數(shù)學(xué)期望;
(2)假設(shè)口罩的生產(chǎn)成本為0.4元/只,若耳繩發(fā)生缺陷時可通過人工修復(fù)至合格來挽回?fù)p失。耳繩缺失、漏熔時人工修復(fù)費為0.01元/只;錯位與錯熔時需更換耳繩,其中耳繩成本為0.06元/根,人工修復(fù)費為0.02元/只.
①以修復(fù)費的平均數(shù)作為判斷依據(jù),判斷哪一條生產(chǎn)線在每日生產(chǎn)過程中挽回?fù)p失時所需費用較少?
②若經(jīng)一次檢驗就合格的口罩,生產(chǎn)商以1元/只的批發(fā)價銷售給市場,經(jīng)人工修復(fù)的打八折出售。以該工廠的日平均收入為依據(jù)分析該生產(chǎn)商是否有必要更換甲生產(chǎn)線?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是矩形,平面平面,,且,點為中點.
(1)證明:平面平面;
(2)直線和平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中動圓P與圓外切,與圓內(nèi)切.
(1)求動圓圓心P的軌跡方程;
(2)直線l過點且與動圓圓心P的軌跡交于A、B兩點.是否存在面積的最大值,若存在,求出的面積的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(2)已知曲線C3的極坐標(biāo)方程為,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,A、B均異于原點O,且,求實數(shù)α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若點的坐標(biāo)為,直線與曲線交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】哈爾濱市第三中學(xué)校響應(yīng)教育部門疫情期間“停課不停學(xué)”的號召,實施網(wǎng)絡(luò)授課,為檢驗學(xué)生上網(wǎng)課的效果,高三學(xué)年進行了一次網(wǎng)絡(luò)模擬考試.全學(xué)年共人,現(xiàn)從中抽取了人的數(shù)學(xué)成績,繪制成頻率分布直方圖(如下圖所示).已知這人中分?jǐn)?shù)段的人數(shù)比分?jǐn)?shù)段的人數(shù)多人.
(1)根據(jù)頻率分布直方圖,求、的值,并估計抽取的名同學(xué)數(shù)學(xué)成績的中位數(shù);
(2)若學(xué)年打算給數(shù)學(xué)成績不低于分的同學(xué)頒發(fā)“網(wǎng)絡(luò)課堂學(xué)習(xí)優(yōu)秀獎”,將這名同學(xué)數(shù)學(xué)成績的樣本頻率視為概率.
(i)估計全學(xué)年的獲獎人數(shù);
(ii)若從全學(xué)年隨機選取人,求所選人中至少有人獲獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com