【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗A原料1千克、B原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗A原料2千克,B原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗A、B原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是( )
A.1800元
B.2400元
C.2800元
D.3100元
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=4cos(ωx﹣ )sinωx﹣cos(2ωx+π),其中ω>0.
(1)求函數(shù)y=f(x)的值域
(2)若f(x)在區(qū)間 上為增函數(shù),求ω的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進價是30元/件的商品,在市場試銷中發(fā)現(xiàn),此商品銷售價元與日銷售量件之間有如下關(guān)系:
x | 45 | 50 |
y | 27 | 12 |
(1)確定與的一個一次函數(shù)關(guān)系式;
(2)若日銷售利潤為P元,根據(jù)(I)中關(guān)系寫出P關(guān)于的函數(shù)關(guān)系,并指出當(dāng)銷售單價為多少元時,才能獲得最大的日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是()
A. 銳角是第一象限的角,所以第一象限的角都是銳角;
B. 如果向量,則;
C. 在中,記,,則向量與可以作為平面ABC內(nèi)的一組基底;
D. 若,都是單位向量,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 的左右頂點分別為A,B,點P在橢圓上且異于A,B兩點,O為坐標(biāo)原點.
(1)若直線AP與BP的斜率之積為 ,求橢圓的離心率;
(2)若|AP|=|OA|,證明直線OP的斜率k滿足|k|> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且,.
(1)求數(shù)列的通項公式;
(2)已知,記(且),是否存在這樣的常數(shù),使得數(shù)列是常數(shù)列,若存在,求出的值;若不存在,請說明理由;
(3)若數(shù)列,對于任意的正整數(shù),均有成立,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,,為自然對數(shù)的底數(shù).
(Ⅰ)若函數(shù)在上存在零點,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)在處的切線方程為.求證:對任意的,總有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,點到拋物線的準(zhǔn)線的距離為.點是上的定點,,是上的兩動點,且線段的中點在直線上.
(Ⅰ)求曲線的方程及的值;
(Ⅱ)記,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)曲線與相交于兩點,求過兩點且面積最小的圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com