已知A、B分別在射線CM、CN(不含端點(diǎn)C)上運(yùn)動(dòng),∠MCN=
2
3
π
,在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c.
(Ⅰ)若a、b、c依次成等差數(shù)列,且公差為2.求c的值;
(Ⅱ)若c=
3
,∠ABC=θ,試用θ表示△ABC的周長(zhǎng),并求周長(zhǎng)的最大值.
分析:(Ⅰ)由題意可得 a=c-4、b=c-2.又因∠MCN=
2
3
π
,cosC=-
1
2
,可得
a2+b2-c2
2ab
=-
1
2
,恒等變形得 c2-9c+14=0,再結(jié)合c>4,可得c的值.
(Ⅱ)在△ABC中,由正弦定理可得AC=2sinθ,BC=2sin(
π
3
-θ)
.△ABC的周長(zhǎng)f(θ)=|AC|+|BC|+|AB|=2sin(θ+
π
3
)+
3
.再由θ∈(0,
π
3
)
,利用正弦函數(shù)的定義域和值域,求得f(θ)取得最大值.
解答:解:(Ⅰ)∵a、b、c成等差,且公差為2,∴a=c-4、b=c-2.
又∵∠MCN=
2
3
π
cosC=-
1
2
,
a2+b2-c2
2ab
=-
1
2
,∴
(c-4)2+(c-2)2-c2
2(c-4)(c-2)
=-
1
2

恒等變形得 c2-9c+14=0,解得c=7,或c=2.
又∵c>4,∴c=7.…(6分)
(Ⅱ)在△ABC中,由正弦定理可得
AC
sin∠ABC
=
BC
sin∠BAC
=
AB
sin∠ACB

AC
sinθ
=
BC
sin(
π
3
-θ)
=
3
sin
3
=2
,AC=2sinθ,BC=2sin(
π
3
-θ)

∴△ABC的周長(zhǎng)f(θ)=|AC|+|BC|+|AB|=2sinθ+2sin(
π
3
-θ)+
3

=2[
1
2
sinθ+
3
2
cosθ]+
3
=2sin(θ+
π
3
)+
3
,…(10分)
又∵θ∈(0,
π
3
)
,∴
π
3
<θ+
π
3
3
,
∴當(dāng)θ+
π
3
=
π
2
,即θ=
π
6
時(shí),f(θ)取得最大值2+
3
.  …(12分)
點(diǎn)評(píng):本題主要考查正弦定理、余弦定理的應(yīng)用,正弦函數(shù)的定義域和值域,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(guò)(4,1)點(diǎn).
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對(duì)稱(chēng),點(diǎn)A、B分別為圓C1、C2上任意一點(diǎn),求|AB|的最小值;
(3)已知直線l上一點(diǎn)M在第一象限,兩質(zhì)點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位的速度沿x軸正方向運(yùn)動(dòng),點(diǎn)Q以每秒2
2
個(gè)單位沿射線OM方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.問(wèn):當(dāng)t為何值時(shí)直線PQ與圓C1相切?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
4
+
y2
3
=1
,拋物線C2y2=4x,過(guò)橢圓C1右頂點(diǎn)的直線l交拋物線C2于A,B兩點(diǎn),射線OA,OB分別與橢圓交于點(diǎn)D,E,點(diǎn)O為原點(diǎn).
(Ⅰ)求證:點(diǎn)O在以DE為直徑的圓的內(nèi)部;
(Ⅱ)記△ODE,△OAB的面積分別為S1,S2,問(wèn)是否存在直線l使S2=3S1?若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩圓的圓心在原點(diǎn)0,半徑分別是1和2,過(guò)點(diǎn)D任作一條射線0T,交小圓于點(diǎn)B,交大圓于點(diǎn)C,再過(guò)點(diǎn)B、c分別作y軸、x軸的垂線,兩垂線相交于點(diǎn)P,又A坐標(biāo)為(一1,0).
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)過(guò)點(diǎn)D(0,
53
)的直線L交軌跡E于點(diǎn)M、N,線段MN中點(diǎn)為Q,當(dāng)L⊥QA時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆福建省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分12分)

已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(guò)(4,1)點(diǎn).

(1)求圓C1的方程;

(2)若圓C2與圓C1關(guān)于直線l對(duì)稱(chēng),點(diǎn)A、B分別為圓C1、C2上任意一點(diǎn),求|AB|的最小值;

(3)已知直線l上一點(diǎn)M在第一象限,兩質(zhì)點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位的速度沿x軸正方向運(yùn)動(dòng),點(diǎn)Q以每秒個(gè)單位沿射線OM方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.問(wèn):當(dāng)t為何值時(shí)直線PQ與圓C1相切?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案