(重慶市2011屆高三下學(xué)期第二次聯(lián)合診斷性考試文科)已知函數(shù)數(shù)學(xué)公式
(1)當(dāng)數(shù)學(xué)公式時(shí),求函數(shù)數(shù)學(xué)公式的單調(diào)區(qū)間:
(2)若函數(shù)數(shù)學(xué)公式的圖象過(guò)點(diǎn)(1,1)且極小值點(diǎn)在區(qū)間(1,2)內(nèi),求實(shí)數(shù)b的取值范圍.

解:(1)∵f′(x)=ax2-(a+1)x+1=(x-1)(ax-1)
當(dāng)a>1時(shí),0<<1,由f′(x)>0,得x>1或x<,由f′(x)<0,得<x<1,∴函數(shù)f(x)的增區(qū)間為(-∞,),(1,+∞);減區(qū)間為(,1)
當(dāng)a=1時(shí),∵f′(x)=(x-1)2≥0,∴函數(shù)f(x)的增區(qū)間為(-∞,+∞)
當(dāng)0<a<1時(shí),>1,由f′(x)>0,得x<1或x>,由f′(x)<0,得1<x<,∴函數(shù)f(x)的增區(qū)間為(,+∞),(-∞.1);減區(qū)間為(1,
當(dāng)a=0時(shí),f′(x)=(1-x),由f′(x)>0,得x<1,由f′(x)<0,得x>1,∴函數(shù)f(x)的增區(qū)間為(-∞,1);減區(qū)間為(1,+∞)
當(dāng)a<0時(shí),<0,由f′(x)>0,得<x<1,由f′(x)<0,得x>1或x<,,∴函數(shù)f(x)的增區(qū)間為(,1);減區(qū)間為(-∞,),(1,+∞)
綜上所述,當(dāng)a>1時(shí)函數(shù)f(x)的增區(qū)間為(-∞,),(1,+∞);減區(qū)間為(,1)
當(dāng)a=1時(shí),函數(shù)f(x)的增區(qū)間為(-∞,+∞)
當(dāng)0<a<1時(shí),函數(shù)f(x)的增區(qū)間為(,+∞),(-∞.1);減區(qū)間為(1,
當(dāng)a=0時(shí),函數(shù)f(x)的增區(qū)間為(-∞,1);減區(qū)間為(1,+∞)
當(dāng)a<0時(shí),函數(shù)f(x)的增區(qū)間為(,1);減區(qū)間為(-∞,),(1,+∞)
(2)∵函數(shù)的圖象過(guò)點(diǎn)(1,1)
,∴b=
∵f(x)極小值點(diǎn)在區(qū)間(1,2)內(nèi),由(1)可知
<a<1

<b<
分析:(1)先求導(dǎo)函數(shù) f′(x),并將導(dǎo)函數(shù)分解因式變形為 f′(x)=(x-1)(ax-1),便于解不等式,再確定討論標(biāo)準(zhǔn),由于解不等式f′(x)>0和f′(x)<0,需比較a與0,1的大小,故確定分當(dāng)a>1,當(dāng)a=1,當(dāng)0<a<1,當(dāng)a=0,當(dāng)a<0五種情況討論,最后分別在五種情況下解含參數(shù)的一元二次不等式即可得函數(shù)的單調(diào)區(qū)間
(2)先由函數(shù)的圖象過(guò)點(diǎn)(1,1),代入得b=,再結(jié)合(1)中的討論,若極小值點(diǎn)在區(qū)間(1,2)內(nèi),需,從而解得a的范圍,最后求一次函數(shù)b=的值域即可得b的范圍
點(diǎn)評(píng):本題考察了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間的方法,導(dǎo)數(shù)與函數(shù)極值的關(guān)系,分類(lèi)討論的思想方法,熟練的解含參數(shù)的一元二次不等式是解決本題的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(重慶市2011屆高三下學(xué)期第二次聯(lián)合診斷性考試文科)已知函數(shù)f(x)=
a
3
x3-
a+1
2
x2+x+b

(1)當(dāng)f(x)=
a
3
x3-
a+1
2
x2+x+b
時(shí),求函數(shù)f(x)=
a
3
x3-
a+1
2
x2+x+b
的單調(diào)區(qū)間:
(2)若函數(shù)f(x)=
a
3
x3-
a+1
2
x2+x+b
的圖象過(guò)點(diǎn)(1,1)且極小值點(diǎn)在區(qū)間(1,2)內(nèi),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

上海市徐匯區(qū)2011屆高三下學(xué)期學(xué)習(xí)能力診斷卷(數(shù)學(xué)理).doc
 

(本題滿(mǎn)分18分)第(1)小題滿(mǎn)分6分,第(2)小題滿(mǎn)分6分,第(3)小題滿(mǎn)分6分。

設(shè)等比數(shù)列的首項(xiàng)為,公比為為正整數(shù)),且滿(mǎn)足是與的等差中項(xiàng);數(shù)列滿(mǎn)足。

求數(shù)列的通項(xiàng)公式;

試確定實(shí)數(shù)的值,使得數(shù)列為等差數(shù)列;

當(dāng)數(shù)列為等差數(shù)列時(shí),對(duì)每個(gè)正整數(shù),在和之間插入個(gè)2,得到一個(gè)新數(shù)列。設(shè)是數(shù)列的前項(xiàng)和,試求滿(mǎn)足的所有正整數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

上海市徐匯區(qū)2011屆高三下學(xué)期學(xué)習(xí)能力診斷卷(數(shù)學(xué)理).doc

       

      (本題滿(mǎn)分14分)第(1)小題滿(mǎn)分7分,第(2)小題滿(mǎn)分7分。

      如圖,已知點(diǎn)在圓柱的底面圓上,為圓的直徑,圓柱的表面積為,,。

      求異面直線(xiàn)與所成角的大。

      (結(jié)果用反三角函數(shù)值表示)

      (2)求點(diǎn)到平面的距離。

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市萬(wàn)盛區(qū)田家炳中學(xué)高二(上)學(xué)期訓(xùn)練數(shù)學(xué)試卷1(文科)(解析版) 題型:解答題

      (重慶市2011屆高三下學(xué)期第二次聯(lián)合診斷性考試文科)已知函數(shù)
      (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間:
      (2)若函數(shù)的圖象過(guò)點(diǎn)(1,1)且極小值點(diǎn)在區(qū)間(1,2)內(nèi),求實(shí)數(shù)b的取值范圍.

      查看答案和解析>>

      同步練習(xí)冊(cè)答案