【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,求的面積.
【答案】(1);(2).
【解析】
(1)利用三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式可得f(x)=2sin(2x),利用正弦函數(shù)的單調(diào)性即可求解其單調(diào)遞增區(qū)間.
(2)由題意可得sin(2A)=1,結(jié)合范圍2A∈(,),可求A的值,由正弦定理可得a,由余弦定理b,進(jìn)而根據(jù)三角形的面積公式即可求解.
(1)∵sin2x﹣cos2x=2sin(2x),
令2kπ2x2kπ,k∈Z,解得kπx≤kπ,k∈Z,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為:[kπ,kπ],k∈Z.
(2)∵f(A)=2sin(2A)=2,
∴sin(2A)=1,
∵A∈(0,π),2A∈(,),
∴2A,解得A,
∵C,c=2,
∴由正弦定理,可得a,
∴由余弦定理a2=b2+c2﹣2bccosA,可得6=b2+4﹣2,解得b=1,(負(fù)值舍去),
∴S△ABCabsinC(1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面內(nèi)一動點(diǎn)到兩個(gè)定點(diǎn)、的距離之和為,線段的長為.
(1)求動點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線與軌跡交于、兩點(diǎn),且點(diǎn)在線段的上方,線段的垂直平分線為.
①求的面積的最大值;
②軌跡上是否存在除、外的兩點(diǎn)、關(guān)于直線對稱,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)提供自行車出租,該景區(qū)有輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過元,則自行車可以全部租出;若超出元,則每超過元,租不出的自行車就增加輛.為了便于結(jié)算,每輛自行車的日租金(元)只取整數(shù),并且要求租自行車一日的總收入必須高于這一日的管理費(fèi)用,用(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后得到的部分).
(1)求函數(shù)的解析式;
(2)試問當(dāng)每輛自行車的日租金為多少元時(shí),才能使一日的凈收入最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一點(diǎn),過點(diǎn)作軸的垂線交軸于點(diǎn),點(diǎn)滿足
(1)求動點(diǎn)的軌跡方程;
(2)設(shè)為直線上一點(diǎn),為坐標(biāo)原點(diǎn),且,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在實(shí)數(shù)集上的可導(dǎo)函數(shù)是偶函數(shù),若對任意實(shí)數(shù)都有恒成立,則使關(guān)于的不等式成立的數(shù)的取值范圍為( )
A.B.(-1,1)C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱中,側(cè)面平面,,,,是的中點(diǎn).
(1)求證:平面;
(2)在側(cè)棱上確定一點(diǎn),使得二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某城市有一條從正西方AO通過市中心O后向東北OB的公路,現(xiàn)要修一條地鐵L,在OA,OB上各設(shè)一站A,B,地鐵在AB部分為直線段,現(xiàn)要求市中心O與AB的距離為,設(shè)地鐵在AB部分的總長度為.
按下列要求建立關(guān)系式:
設(shè),將y表示成的函數(shù);
設(shè),用m,n表示y.
把A,B兩站分別設(shè)在公路上離中心O多遠(yuǎn)處,才能使AB最短?并求出最短距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com