已知{an}是等差數(shù)列,其前n項和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,s4-b4=10.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tn=anb1+an-1b2+…+a1bn,n∈N*,證明:Tn+12=-2an+10bn(n∈N*).
【答案】分析:(1)直接設(shè)出首項和公差,根據(jù)條件求出首項和公差,即可求出通項.
(2)先寫出Tn的表達式;方法一:借助于錯位相減求和;
方法二:用數(shù)學(xué)歸納法證明其成立.
解答:解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由條件a4+b4=27,s4-b4=10,
得方程組,解得,
故an=3n-1,bn=2n,n∈N*
(2)證明:方法一,由(1)得,Tn=2an+22an-1+23an-2+…+2na1;   ①;
2Tn=22an+23an-1+…+2na2+2n+1a1;     ②;
由②-①得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+2
=+2n+2-6n+2
=10×2n-6n-10;
而-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10;
故Tn+12=-2an+10bn(n∈N*).
方法二:數(shù)學(xué)歸納法,
③當(dāng)n=1時,T1+12=a1b1+12=16,-2a1+10b1=16,故等式成立,
④假設(shè)當(dāng)n=k時等式成立,即Tk+12=-2ak+10bk,
則當(dāng)n=k+1時有,
Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1
=ak+1b1+q(akb1+ak-1b2+…+a1bk
=ak+1b1+qTk
=ak+1b1+q(-2ak+10bk-12)
=2ak+1-4(ak+1-3)+10bk+1-24
=-2ak+1+10bk+1-12.
即Tk+1+12=-2ak+1+10bk+1,因此n=k+1時等式成立.
③④對任意的n∈N*,Tn+12=-2an+10bn成立.
點評:本題主要考察等差數(shù)列和等比數(shù)列的綜合問題.解決這類問題的關(guān)鍵在于熟練掌握基礎(chǔ)知識,基本方法.并考察計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù){an}的前n項和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知滿足:
(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案