【題目】已知二次函數(shù)

)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

)是否存在常數(shù),當(dāng)時(shí), 在值域?yàn)閰^(qū)間?

【答案】(1) (2) 存在常數(shù) , 滿(mǎn)足條件.

【解析】試題分析:

(1)結(jié)合二次函數(shù)的對(duì)稱(chēng)軸得到關(guān)于實(shí)數(shù)m的不等式,求解不等式可得實(shí)數(shù)的取值范圍為

(2) 在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù).據(jù)此分類(lèi)討論:

①當(dāng)時(shí),

②當(dāng)時(shí),

③當(dāng),

綜上可知,存在常數(shù), , 滿(mǎn)足條件.

試題解析:

∵二次函數(shù)的對(duì)稱(chēng)軸為,

又∵上單調(diào)遞減,

,

即實(shí)數(shù)的取值范圍為

在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù).

①當(dāng)時(shí),在區(qū)間上, 最大, 最小,

,即,

解得

②當(dāng)時(shí),在區(qū)間上, 最大, 最小,

,解得

③當(dāng),在區(qū)間上, 最大, 最小,

,即,

解得

綜上可知,存在常數(shù), 滿(mǎn)足條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x,y滿(mǎn)足約束條件 ,若目標(biāo)函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+ )的圖象向右平移 后的表達(dá)式為(
A.y=tan(2x+
B.y=tan(x﹣
C.y=tan(2x﹣
D.y=tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,平面底面.分別是的中點(diǎn),求證:

(Ⅰ)底面;

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(c﹣2a) =c
(1)求B的大。
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對(duì)任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 ,過(guò)點(diǎn)作圓的切線(xiàn)交橢圓、兩點(diǎn).

(Ⅰ)求橢圓的焦點(diǎn)坐標(biāo)和離心率;

(Ⅱ)將表示成的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若圓(x-1)2+(y+1)2R2上有且僅有兩個(gè)點(diǎn)到直線(xiàn)4x+3y=11的距離等于1,則半徑R的取值范圍是(  )

A. R>1 B. R<3 C. 1<R<3 D. R≠2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從點(diǎn)P(4,5)向圓(x-2)2y2=4引切線(xiàn),求切線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知?jiǎng)又本(xiàn)過(guò)點(diǎn),且與圓交于、兩點(diǎn).

(1)若直線(xiàn)的斜率為,求的面積;

(2)若直線(xiàn)的斜率為,點(diǎn)是圓上任意一點(diǎn),求的取值范圍;

(3)是否存在一個(gè)定點(diǎn)(不同于點(diǎn)),對(duì)于任意不與軸重合的直線(xiàn),都有平分,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校高一年級(jí)研究性學(xué)習(xí)小組共有9名學(xué)生,其中有3名男生和6名女生.在研究性學(xué)習(xí)過(guò)程中,要進(jìn)行兩次匯報(bào)活動(dòng)(即開(kāi)題匯報(bào)和結(jié)題匯報(bào)),每次匯報(bào)都從這9名學(xué)生中隨機(jī)選1 人作為代表發(fā)言.設(shè)每人每次被選中與否均互不影響.

1求兩次匯報(bào)活動(dòng)都由小組成員甲發(fā)言的概率;

2設(shè)為男生發(fā)言次數(shù)與女生發(fā)言次數(shù)之差的絕對(duì)值,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案