精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx.
(1)當x∈[0, ]時,求f(x)的值域;
(2)用五點法在圖中作出y=f(x)在閉區(qū)間[﹣ , ]上的簡圖;
(3)說明f(x)的圖象可由y=sinx的圖象經過怎樣的變化得到?

【答案】
(1)解:∵f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx

=sin2x+ cos2x

=2sin(2x+ ),

∵x∈[0, ],2x+ ∈[ , ],

∴f(x)=2sin(2x+ )∈[﹣ ,2].


(2)解:列表:

2x+

0

π

x

y

0

2

0

﹣2

0

作圖:


(3)解:把y=sinx的圖象向左平移 個單位,可得函數y=sin(x+ )的圖象;

再把所得圖象上點的橫坐標變?yōu)樵瓉淼? 倍,可得函數y=sin(2x+ )的圖象;

再把所得圖象上的點的縱坐標變?yōu)樵瓉淼?倍,可得函數y=2sin(2x+ )的圖象.


【解析】(1)由條件利用三角函數恒等變換的應用化簡函數解析式可得f(x)=2sin(2x+ ),由x∈[0, ]根據正弦函數的定義域和值域即可得解.(2)用五點法作函數y=Asin(ωx+φ)在一個周期上的簡圖.(3)根據函數y=Asin(ωx+φ)的圖象變換規(guī)律,可得結論.
【考點精析】根據題目的已知條件,利用五點法作函數y=Asin(ωx+φ)的圖象和函數y=Asin(ωx+φ)的圖象變換的相關知識可以得到問題的答案,需要掌握描點法及其特例—五點作圖法(正、余弦曲線),三點二線作圖法(正、余切曲線);圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列{an} 中,a1=1,a2= ,且 (n=2,3,4,…)
(1)求a3、a4的值;
(2)設bn= (n∈N*),試用bn表示bn+1并求{bn} 的通項公式;
(3)設cn= (n∈N*),求數列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某投資公司計劃投資A,B兩種金融產品,根據市場調查與預測,A產品的利潤y1與投資金額x的函數關系為y1=18﹣ ,B產品的利潤y2與投資金額x的函數關系為y2= (注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產品中,其中x萬元資金投入A產品,試把A,B兩種產品利潤總和表示為x的函數,并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的幾何體是由棱臺 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 , 平面 ,

1)求證:平面 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數y=sin(x﹣ )的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得圖象向左平移 個單位,則所得函數圖象對應的解析式為(
A.y=sin( x﹣
B.y=sin(2x﹣
C.y=sin x
D.y=sin( x﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex﹣ex+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,則實數a的取值范圍是(
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xoy中,以O為極點,x軸非負半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρsin2θ=4cosθ,直線l的參數方程為: (t為參數),兩曲線相交于M,N兩點.
(1)寫出曲線C的直角坐標方程和直線l的普通方程;
(2)若P(﹣2,﹣4),求|PM|+|PN|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=4sin2 + )sinx+(cosx+sinx)(cosx﹣sinx)﹣1.
(1)化簡f(x);
(2)常數ω>0,若函數y=f(ωx)在區(qū)間 上是增函數,求ω的取值范圍;
(3)若函數g(x)= 的最大值為2,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方形ADEF與梯形ABCD所在的閏面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M為CE的中點.

(1)求證:BM∥平面ADEF;
(2)求平面BEC與平面ADEF所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案