【題目】一個袋子裝有大小形狀完全相同的9個球,其中5個紅球編號分別為1,2,3,4,5;4個白球編號分別為1,2,3,4,從袋中任意取出3個球

I求取出的3個球編號都不相同的概率;

II為取出的3個球中編號的最小值,求的分布列與數(shù)學(xué)期望

【答案】III

【解析】

試題分析:設(shè)A表示取出的3個球的編號為連續(xù)的自然數(shù),取出3球的方法有84種,連續(xù)自然數(shù)的方法:123和234均為種,345為種,由此能求出結(jié)果.(X的取值為2,3,4,5分別求出相應(yīng)的概率,由此能求出X的分布列與數(shù)學(xué)期望

試題解析:I設(shè)取出的3個球編號都不相同為事件A,取出的3個球中恰有兩個球編號相同為事件B,則

II的取值為1,2,3,4

所以的分布列為:

1

2

3

4

的數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個人打靶時連續(xù)射擊兩次,則事件“恰有一次中靶”的互斥的事件是( )

A. 至多有一次中靶 B. 兩次都中靶

C. 恰有一次不中靶 D. 至少有一次中靶

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

I)曲線x=1處的切線與直線垂直,求實數(shù)a的值;

II)當(dāng)時,求證: 在(1,+∞)上單調(diào)遞增;

III)當(dāng)x≥1時, 恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查市民對汽車品牌的認(rèn)可度,在秋季車展上,從有意購車的500名市民中,隨機抽樣100名市民,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖2頻率分布表

(1)頻率分布表中的①②位置應(yīng)填什么數(shù)?并補全頻率分布直方圖,再根據(jù)頻率分布直方圖統(tǒng)計這500名志愿者得平均年齡;

(2)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加的宣傳活動,再從這20名中選取2名志愿者擔(dān)任主要發(fā)言人.記這2名志愿者中“年齡低于30歲”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2a1)x , 若x>0時總有f(x)>1,則實數(shù)a的取值范圍是( )
A.1<a<2
B.a<2
C.a>1
D.0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)字序列:3,-2,-4,0,5,13,6,-32,-18,9,-20.下面是從該序列中搜索所有負(fù)數(shù)的一個算法,請補全步驟:

S1 輸入實數(shù)a;

S2 _____;

S3 輸出a,轉(zhuǎn)S1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料

日期

晝夜溫差

就診人數(shù)

16

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選取的是月與月的兩組數(shù)據(jù),請根據(jù)月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程

3若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認(rèn)為得到的線性回歸方程是理想的,試問2中所得線性回歸方程是否理想?

參考公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村計劃建造一個室內(nèi)面積為800的矩形蔬菜溫室在溫室內(nèi),沿左右兩側(cè)與后側(cè)內(nèi)墻各保留1寬的通道,沿前側(cè)內(nèi)墻保留3寬的空地當(dāng)矩形溫室的邊長各為多少時?蔬菜的種植面積最大,最大種植面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P-A BC的四個頂點都在球D的表面上,PA平面ABC,ABBC,PA =3,AB=BC=2,則球O的表面積為

A13π B17π C52π D68π

查看答案和解析>>

同步練習(xí)冊答案