函數(shù)y=4x+
1
4x-5
﹙x<
5
4
﹚在x=a時(shí),y有最大值b,則ba=
 
考點(diǎn):基本不等式
專(zhuān)題:不等式的解法及應(yīng)用
分析:變形利用基本不等式和指數(shù)運(yùn)算即可得出.
解答: 解:∵x<
5
4
,
∴4x-5<0,即5-4x>0.
y=-[(5-4x)+
1
5-4x
]+5
≤-2
(5-4x)•
1
5-4x
+5=3,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),即y取得最大值3.
∴a=1,b=3.
∴ba=3.
故答案為:3.
點(diǎn)評(píng):本題考查了基本不等式和指數(shù)運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:cos(-π-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程|
(y+3)2+x2
-
(y-3)2+x2
|=6表示的曲線的類(lèi)型是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列四個(gè)命題:
①若一個(gè)圓錐的底面半徑縮小到原來(lái)的
1
2
,其體積縮小到原來(lái)的
1
4
;
②若兩組數(shù)據(jù)的中位數(shù)相等,則它們的平均數(shù)也相等;
③直線x+y+1=0與圓x2+y2=
1
2
相切;
④“10a≥10b”是“l(fā)ga≥lgb”的充分不必要條件;
⑤過(guò)M(2,0)的直線l與橢圓
x2
2
+y2=1交于P1P2兩點(diǎn),線段P1P2中點(diǎn)為P,設(shè)直線l的斜率為k1(k1≠0),直線OP的斜率為k2,則k1k2等于-
1
2

其中真命題的序號(hào)是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)A,B分別是離心率為e的圓錐曲線
x2
m
-
y2
n
=1的焦點(diǎn),頂點(diǎn)C在該曲線上; 一同學(xué)已正確地推得:當(dāng)m>n>0時(shí),有e(sinA+sinB)=sinC,類(lèi)似地,當(dāng)m>0,n<0時(shí),有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l與雙曲線C于A,B兩點(diǎn)(A,B在同一支上),F(xiàn)1,F(xiàn)2為雙曲線的兩個(gè)焦點(diǎn),則F1,F(xiàn)2在(  )
A、以A,B為焦點(diǎn)的橢圓上或線段AB的垂直平分線上
B、以A,B為焦點(diǎn)的雙曲線上或線段AB的垂直平分線上
C、以AB為直徑的圓上或線段AB的垂直平分線上
D、以上說(shuō)法均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為△ABC的外心(三角形外接圓的圓心).若
AO
=
1
3
AB
+
1
3
AC
,則∠BAC的度數(shù)為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2014)2f(x+2014)-4f(-2)>0的解集為(  )
A、(-∞,-2012)
B、(-2012,0)
C、(-∞,-2016)
D、(-2016,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,
(1)若直線y=kx+1與函數(shù)f(x)的圖象相切,求實(shí)數(shù)k的值;
(2)若函數(shù)g(x)=f(eex),a<b,試證明:
g(a)+g(b)
2
g(b)-g(a)
b-a

查看答案和解析>>

同步練習(xí)冊(cè)答案