橢圓上有n個不同的點:P1,P2, ,Pn,橢圓的右焦點為F,數(shù)列{|PnF|}是公差大于的等差數(shù)列,則n的最大值是 ( )
A.198B.199
C.200D.201
C

試題分析:由橢圓方程可知最小為,最大值為,設數(shù)列首項為1,第n項為3,公差為
,n最大值為200
點評:橢圓上的點到焦點的最大距離為,最小距離為,轉(zhuǎn)化為數(shù)列首項,末項,利用通項公式得到的關系
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的離心率,且短半軸為其左右焦點,是橢圓上動點.

(Ⅰ)求橢圓方程;
(Ⅱ)當時,求面積;
(Ⅲ)求取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓(a>b>0)的兩焦點為F1、F2,若橢圓上存在一點Q,使∠F1QF2=120º,橢圓離心率e的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與曲線相切于點,則的值為 (    )
A.5B. 6 C. 4D. 9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)已知橢圓()過點,其左、右焦點分別為,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題14分)
已知橢圓)過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標原點),求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,過拋物線y2="2px" (p0)的焦點F的直線交拋物線于點A、B,交其準線于點C,若|BC|=2|BF|,且|AF|=3.則此拋物線的方程為(    )

A.y2=—x
B.y2=9x
C.y2=x
D. y2=3x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線與拋物線相交于兩點,F(xiàn)為拋物線的焦點,若,則k的值為(   )。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)己知、是橢圓)上的三點,其中點的坐標為,過橢圓的中心,且,。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線(斜率存在時)與橢圓交于兩點,設為橢圓 軸負半軸的交點,且,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案