設復數(shù)z=(m+1)+(m-2)i(m∈R),試求m為何值時:
(1)z是實數(shù);
(2)z是純虛數(shù);
(3)z對應的點位于復平面第四象限.
【答案】
分析:(1)復數(shù)z=(m+1)+(m-2)i(m∈R)為實數(shù),則其虛部等于0;
(2)復數(shù)z=(m+1)+(m-2)i(m∈R)為純虛數(shù),則其實部等于0,虛部不等于0;
(3)復數(shù)z=(m+1)+(m-2)i(m∈R)對應的點位于復平面第四象限,則其實部大于0且虛部小于0.
解答:解:(1)若復數(shù)z=(m+1)+(m-2)i(m∈R)為實數(shù),則m-2=0,即m=2.
所以,使復數(shù)z=(m+1)+(m-2)i(m∈R)為實數(shù)的m的值為2;
(2)若復數(shù)z=(m+1)+(m-2)i(m∈R)為純虛數(shù),則
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922016_DA/0.png)
,解得:m=-1.
所以,使復數(shù)z=(m+1)+(m-2)i(m∈R)為純虛數(shù)的m的值為-1;
(3)若復數(shù)z=(m+1)+(m-2)i(m∈R)對應的點位于復平面第四象限,
則
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102935816292294/SYS201311031029358162922016_DA/1.png)
,解得:-1<m<2.
所以,使復數(shù)z=(m+1)+(m-2)i(m∈R)對應的點位于復平面第四象限的m的取值范圍是(-1,1).
點評:本題考查復數(shù)的基本概念,關鍵是讀懂題意,把問題轉(zhuǎn)化為方程組或不等式組求解.