已知樣本中5個個體的值分別為:0,1,1,2,3.則該樣本的方差為
26
25
26
25
分析:先求樣本的平均數(shù)
.
x
,再利用方差的計(jì)算公式s2=
1
5
5
i=1
(xi-
.
x
)2
,即可計(jì)算出答案.
解答:解:先求0,1,1,2,3這五個數(shù)的平均數(shù)
.
x
=
1
5
×(0+1+1+2+3)=
7
5
,
s2=
1
5
[(0-
7
5
)2+(1-
7
5
)2×2+
(2-
7
5
)2+(3-
7
5
)2]
=
26
25

故答案為
26
25
點(diǎn)評:本題考查了樣本的方差的計(jì)算,掌握方差的計(jì)算公式是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、從編號為0000~7999的8000個個體中,用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,則最后一段的編號為
7840~7999
,若已知最后一個入樣的編號為7894,則前5個入樣的編號為
0054.0214.0374.0534.0694

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:
①凈A,B,C三種個體按3:1:2的比例分層抽樣調(diào)查,如果抽取的A個體為9個,則樣本容易為30;
②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、眾數(shù)、中位數(shù)相同;
③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲;
④已知具有線性相關(guān)關(guān)系的兩個變量滿足的回歸直線方程為y=1-2x.則x每增加1個單位,y平均減少2個單位;
⑤統(tǒng)計(jì)的10個樣本數(shù)據(jù)為125,120,122,105,130,114,116,95,120,134,則樣本數(shù)據(jù)落在[114.5,124.5)內(nèi)的頻率為0.4
其中真命題為( 。
A、①②④B、②④⑤C、②③④D、③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測文科數(shù)學(xué)試卷(解析版) 題型:解答題

為了了解某市工人開展體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進(jìn)行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠

(Ⅰ)從A,B,C區(qū)中分別抽取的工廠個數(shù);

(Ⅱ)若從抽取的7個工廠中隨機(jī)抽取2個進(jìn)行調(diào)查結(jié)果的對比,計(jì)算這2個工廠中至少有1個來自A區(qū)的概率.

【解析】本試題主要考查了統(tǒng)計(jì)和概率的綜合運(yùn)用。

第一問工廠總數(shù)為18+27+18=63,樣本容量與總體中的個體數(shù)比為7/63=1/9…3分

所以從A,B,C三個區(qū)中應(yīng)分別抽取的工廠個數(shù)為2,3,2。

第二問設(shè)A1,A2為在A區(qū)中的抽得的2個工廠,B1,B2­,B3為在B區(qū)中抽得的3個工廠,

C1,C2為在C區(qū)中抽得的2個工廠。

這7個工廠中隨機(jī)的抽取2個,全部的可能結(jié)果有1/2*7*6=32種。

隨機(jī)的抽取的2個工廠至少有一個來自A區(qū)的結(jié)果有A1,A2),A1,B2),A1,B1),

A1,B3)A1,C2),A1,C1), …………9分

同理A2還能給合5種,一共有11種。  

所以所求的概率為p=11/21

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省宿遷市沭陽高中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知樣本中5個個體的值分別為:0,1,1,2,3.則該樣本的方差為   

查看答案和解析>>

同步練習(xí)冊答案