分析 利用兩角和差的正弦公式化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的值域,得出結(jié)論.
解答 解:cos2x+sin2x=$\sqrt{2}$($\frac{\sqrt{2}}{2}$cos2x+$\frac{\sqrt{2}}{2}$sin2x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)∈[-$\sqrt{2}$ $\sqrt{2}$],
故答案為:[-$\sqrt{2}$ $\sqrt{2}$].
點(diǎn)評(píng) 本題主要考查兩角和差的正弦公式,正弦函數(shù)的值域,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sin$\frac{19π}{8}$<cos$\frac{14π}{9}$ | B. | sin(-$\frac{54π}{7}$)<sin(-$\frac{63π}{8}$) | ||
C. | tan(-$\frac{13π}{4}$)>tan(-$\frac{17π}{5}$) | D. | tan138°>tan143° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=±\frac{9}{4}x$ | B. | $y=±\frac{4}{9}x$ | C. | $y=±\frac{2}{3}x$ | D. | $y=±\frac{3}{2}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4≤a≤9 | B. | a≤-4或a≥9 | C. | -9≤a≤4 | D. | a≤-9或a≥4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com