【題目】如圖,平面PAC⊥平面ABC,是以AC為斜邊的等腰直角三角形,E,FO分別為PA,PBAC的中點(diǎn),.

1)設(shè)GOC的中點(diǎn),證明:∥平面

2)證明:在內(nèi)存在一點(diǎn)M,使FM⊥平面BOE,求點(diǎn)MOA,OB的距離.

【答案】1)見解析(2)見解析,點(diǎn)MOA,OB的距離為.

【解析】

1)連結(jié)OP,以O為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面的法向量,即可由向量數(shù)量積的坐標(biāo)運(yùn)算證明,進(jìn)而可知∥平面

2M內(nèi),可設(shè)點(diǎn)M的坐標(biāo)為,由平面,可知,由共線向量的坐標(biāo)關(guān)系即可求得M的坐標(biāo),檢驗(yàn)M的坐標(biāo)是否滿足在內(nèi),進(jìn)而由M的坐標(biāo)可求得點(diǎn)MOA,OB的距離.

1)證明:中點(diǎn),連結(jié)OP如下圖所示,

因?yàn)?/span>,

所以,

因?yàn)槠矫?/span>平面,且平面平面,

所以平面,

平面,則.

O為坐標(biāo)原點(diǎn),分別以OB、OC,OP所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,

由題意得,得

設(shè)平面的法向量為

,代入可得,

,代入可得,所以平面BOE的法向量為

,

,即,

又直線不在平面內(nèi),

因此有平面.

II)設(shè)點(diǎn)M的坐標(biāo)為,則,

因?yàn)?/span>平面,所以有,

因此有,即點(diǎn)M的坐標(biāo)為,

在平面直角坐標(biāo)系中,的內(nèi)部區(qū)域滿足不等式組

經(jīng)檢驗(yàn),點(diǎn)M的坐標(biāo)滿足上述不等式組,

所以在內(nèi)存在一點(diǎn)M,使平面,由點(diǎn)M的坐標(biāo)得點(diǎn)MOA,OB的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高一學(xué)年結(jié)束后,要對(duì)某班的50名學(xué)生進(jìn)行文理分班,為了解數(shù)學(xué)對(duì)學(xué)生選擇文理科是否有影響,有人對(duì)該班的分科情況做了如下的數(shù)據(jù)統(tǒng)計(jì):

理科人數(shù)

文科人數(shù)

總計(jì)

數(shù)學(xué)成績(jī)好的人數(shù)

25

30

數(shù)學(xué)成績(jī)差的人數(shù)

10

合計(jì)

15

(Ⅰ)根據(jù)數(shù)據(jù)關(guān)系,完成列聯(lián)表;

(Ⅱ)通過(guò)計(jì)算判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為數(shù)學(xué)對(duì)學(xué)生選擇文理科有影響.

附:

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(xué)(男),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

總計(jì)

男同學(xué)

女同學(xué)

總計(jì)

(1)能否據(jù)此判斷有的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?

(2)經(jīng)過(guò)多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在分鐘,乙每次解答一道幾何題所用的時(shí)間在分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

(3)現(xiàn)從選擇做幾何的名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

若關(guān)于x的方程有唯一解,且,,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】進(jìn)入冬天,大氣流動(dòng)性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關(guān)性,以確定是否對(duì)車輛實(shí)施限行.為此,環(huán)保部門采集到該城市過(guò)去一周內(nèi)某時(shí)段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

周六

周日

車流量(x萬(wàn)輛)

10

9

9.5

10.5

11

8

8.5

空氣質(zhì)量指數(shù)y

78

76

77

79

80

73

75

(1)根據(jù)表中周一到周五的數(shù)據(jù),求關(guān)于的線性回歸方程;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為得到的線性回歸方程是可靠的.請(qǐng)根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?

附:回歸方程中斜率和截距最小二乘估計(jì)公式分別為:

其中:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線與直線垂直,求實(shí)數(shù)的值;

2)若上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過(guò)4噸時(shí),每噸為元,當(dāng)用水超過(guò)4噸時(shí),超過(guò)部分每噸為元,每月甲、乙兩戶共交水費(fèi)元,已知甲、乙兩戶該月用水量分別為.

1)求關(guān)于的函數(shù)關(guān)系式;

2)若甲、乙兩戶該月共交水費(fèi)元,分別求出甲、乙兩戶該月的用水量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C的對(duì)邊分別為ab、c.已知cosC

(1),求△ABC的面積;

(2)設(shè)向量,且,求sin(BA)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中a為常數(shù).

當(dāng),求a的值;

當(dāng)時(shí),關(guān)于x的不等式恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案