11.有下列四個(gè)命題:
①“若xy=1,則x、y互為倒數(shù)”的逆命題;
②“相似三角形的周長(zhǎng)相等”的否命題;
③“若b≤-1,則方程x2-2bx+b2+b=0有實(shí)根”的逆否命題;
④若“A∪B=B,則A=B”的逆否命題.
其中的真命題是( 。
A.①②B.②③C.①③D.③④

分析 ①,“若xy=1,則x、y互為倒數(shù)”的逆命題是:若x、y互為倒數(shù),則xy=1;
②,“相似三角形的周長(zhǎng)相等”的否命題是:不相似三角形的周長(zhǎng)不相等;
③,“若b≤-1,則方程x2-2bx+b2+b=0有實(shí)根“是真命題,其逆否命題與原命題同真假;
④,若“A∪B=B,則A=B”是假命題,其逆否命題與原命題同真假.

解答 解:對(duì)于①,“若xy=1,則x、y互為倒數(shù)”的逆命題是:若x、y互為倒數(shù),則xy=1,正確;
對(duì)于②,“相似三角形的周長(zhǎng)相等”的否命題是:不相似三角形的周長(zhǎng)不相等,錯(cuò);
對(duì)于③,“若b≤-1,則方程x2-2bx+b2+b=0有實(shí)根“是真命題,其逆否命題與原命題同真假,故正確;
對(duì)于④,若“A∪B=B,則A=B”是假命題,其逆否命題與原命題同真假,故錯(cuò).
故選:C.

點(diǎn)評(píng) 本題考查了命題的真假,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,已知平面α⊥β,α∩β=l,A,B是直線l上的兩點(diǎn),C,D是平面β內(nèi)的兩點(diǎn),且 DA⊥l,CB⊥l,DA=2,AB=4,CB=4,P是平面α上的一動(dòng)點(diǎn),且直線 PD,PC與平面α所成角相等,則二面角 P-BC-D的余弦值的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若甲、乙、丙三組人數(shù)分別為18,24,30,現(xiàn)用分層抽樣方法從甲、乙、丙三組中共抽取12人,則在乙組中抽取的人數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知a>0,b>0且a+b=2,則$\frac{1}{a}+\frac{1}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸的一個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成正三角形,且該三角形的周長(zhǎng)為6
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)F1,F(xiàn)2是橢圓C的左右焦點(diǎn),若橢圓C的一個(gè)內(nèi)接平行四邊形ABCD的一組對(duì)邊過(guò)點(diǎn)F1和F2,求這個(gè)平行四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.與直線 $y=\frac{1}{2}x+1$垂直,且過(guò)(2,0)點(diǎn)的直線方程是(  )
A.y=-2x+4B.$y=\frac{1}{2}x-1$C.y=-2x-4D.$y=\frac{1}{2}x-4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=$\sqrt{(\frac{1}{3})^{x}-2}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,log32]B.(-∞,-log32]C.[log32,+∞)D.[-log32,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(3k,3),$\overrightarrow$=(-6,k-7)
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求k的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,求|$\overrightarrow{a}$-2$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)任意a∈R,曲線y=ex(x2+ax+1-2a)在點(diǎn)P(0,1-2a)處的切線l與圓C:(x-1)2+y2=16的位置關(guān)系是( 。
A.相交B.相切C.相離D.以上均有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案