【題目】近期,某公交公司與銀行開展云閃付乘車支付活動,吸引了眾多乘客使用這種支付方式.某線路公交車準(zhǔn)備用20天時間開展推廣活動,他們組織有關(guān)工作人員,對活動的前七天使用云閃付支付的人次數(shù)據(jù)做了初步處理,設(shè)第x天使用云閃付支付的人次為y,得到如圖所示的散點圖.

由統(tǒng)計圖表可知,可用函數(shù)yabx擬合yx的關(guān)系

1)求y關(guān)于x的回歸方程;

2)預(yù)測推廣期內(nèi)第幾天起使用云閃付支付的人次將超過10000人次.

附:①參考數(shù)據(jù)

xi2

xiyi

xivi

4

360

2.30

140

14710

71.40

表中vilgyi,lgyi

②參考公式:對于一組數(shù)據(jù)(u1,v1),(u2,v2)…,(un,vn),其回歸直線vα+βu的斜率和截距的最小二乘估計分別為β,α

【答案】(1)y100.25x+1.3;(2)預(yù)測推廣期內(nèi)第11天起使用云閃付支付的人次將超過10000人次

【解析】

1)先對yabx兩邊同取以10為底的對數(shù),得到vxlgb+lga,再根據(jù)斜率和截距的的最小二乘法估計得到lgblga,從而得到,再寫出y關(guān)于x的線性回歸方程;(2)根據(jù)(1)所得的線性回歸方程,得到100.25x+1.310000,解出的范圍,得到答案.

1)由yabx,兩邊同時取以10為底的對數(shù),

lgylga+xlgb,即vxlgb+lga,

由最小二乘法得:lgb

vxlgb+lga過點(4,2.30),

lga2.300.25×41.3

a101.3,b100.25

y關(guān)于x的線性回歸方程為y101.3100.25x100.25x+1.3

2)由100.25x+1.310000,得0.25x+1.34,解得x10.8

又∵xN*,∴預(yù)測推廣期內(nèi)第11天起使用云閃付支付的人次將超過10000人次.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求證:

2)若函數(shù)的圖象與直線沒有交點,求實數(shù)的取值范圍;

3)若函數(shù),則是否存在實數(shù),使得的最小值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,記函數(shù)的圖象為曲線C1,函數(shù)的圖象為曲線C2

(Ⅰ)比較f2)和1的大小,并說明理由;

(Ⅱ)當(dāng)曲線C1在直線y1的下方時,求x的取值范圍;

(Ⅲ)證明:曲線C1C2沒有交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運輸公司接受了向抗洪救災(zāi)地區(qū)每天送至少支援物資的任務(wù).該公司有輛載重型卡車與輛載重為型卡車,有名駕駛員,每輛卡車每天往返的次數(shù)為型卡車次,型卡車次;每輛卡車每天往返的成本費型為元,型為元.請為公司安排一下,應(yīng)如何調(diào)配車輛,才能使公司所花的成本費最低?若只安排型或型卡車,所花的成本費分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形, ,點E在棱PB上.

(Ⅰ)求證:平面;

(Ⅱ)當(dāng)且E為PB的中點時,求AE與平面PDB所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于的不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線為曲線關(guān)于直線的對稱曲線,點,分別為曲線、曲線上的動點,點坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù).在以原點為極點,為參數(shù)).在以原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè),直線與曲線C交于MN兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、、表示不同的直線,、表示不同的平面,給出下列個命題:其中命題正確的個數(shù)是(

①若,且,則;

②若,且,則;

③若,,,則;

,,,且,則.

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案