11.設(shè)U=R,集合A={x|x2+3x+2=0},B={x|(x+m)(x+1)=0},若(∁UA)∩B=∅,求m的值.

分析 化簡(jiǎn)集合A,求出∁UA,由(CUA)∩B=∅得B⊆A,討論m的取值,求出對(duì)應(yīng)集合B,從而求出m的值.

解答 解:集合A={x|x2+3x+2=0}={-2,-1},
由方程(x+m)(x+1)=0,
得△=(m+1)2-4m≥0,
所以B非空,
由(CUA)∩B=∅,得B⊆A,
當(dāng)m=1時(shí),B={-1},符合B⊆A;
當(dāng)m≠1時(shí),B={-1,-m},
而B⊆A,所以-m=-2,即m=2.
所以m=1或2.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=2x+$\frac{a}{x}$(x>0,a>0)在x=2時(shí)取得最小值,則a=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在互聯(lián)網(wǎng)時(shí)代,網(wǎng)校培訓(xùn)已經(jīng)成為青年學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷售量h(x)(單位:千套)與銷售價(jià)格x(單位:元/套)滿足的關(guān)系式h(x)=f(x)+g(x)(3<x<7,m為常數(shù)),其中f(x)與(x-3)成反比,g(x)與(x-7)的平方成正比,已知銷售價(jià)格為5元/套時(shí),每日可售出套題21千套,銷售價(jià)格為3.5元/套時(shí),每日可售出套題69千套.
(1)求h(x)的表達(dá)式;
(2)假設(shè)網(wǎng)校的員工工資,辦公等所有開銷折合為每套題3元(只考慮銷售出的套數(shù)),試確定銷售價(jià)格x的值,使網(wǎng)校每日銷售套題所獲得的利潤(rùn)最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,圖中的幾何體是圓柱沿豎直方向切掉一半后得到的,則該幾何體的俯視圖是( 。  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.畫出下列函數(shù)圖象并由圖象觀察定義域和值域.
(1)y=|x+3|;
(2)y=|2x2-3|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.點(diǎn)A,B分別為圓M:x2+(y-3)2=1與圓N:(x-3)2+(y-8)2=4上的動(dòng)點(diǎn),點(diǎn)C在直線x+y=0上運(yùn)動(dòng),則|AC|+|BC|的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=a(x+1)2-4lnx,a∈R.
(Ⅰ)若a=$\frac{1}{2}$,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若對(duì)任意x∈[1,e],f(x)<1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=x2-2x+3在[0,a]上的值域?yàn)閇2,3],則a的取值范圍是( 。
A.[1,+∞)B.(0,2]C.[1,2]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.一同學(xué)投籃每次命中的概率是$\frac{1}{2}$,該同學(xué)連續(xù)投藍(lán)5次,每次投籃相互獨(dú)立.
(1)求連續(xù)命中4次的概率;
(2)求恰好命中4次的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案