如圖,已知四邊形ABCD內(nèi)接于圓O,過B作圓O的切線交AD的延長線于E,若BD是∠CBE的平分線.證明:
(Ⅰ)AD是∠BAC的平分線;
(Ⅱ)AB•BE=AE•CD.
考點(diǎn):與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:(Ⅰ)證明AD是∠BAC的平分線,只需證明∠CAD=∠BAD,利用BE是圓O的切線,BD是∠CBE的平分線即可證明;
(Ⅱ)由(Ⅰ)知,△ABE∽△BDE,可得
AE
BE
=
AB
BD
,證明BD=CD,即可證明AB•BE=AE•CD.
解答: 證明:(Ⅰ)∵BE是圓O的切線,
∴∠EBD=∠BAD=∠BCD,
∵BD是∠CBE的平分線,
∴∠CBD=∠BAD,
∴∠CAD=∠CBD=∠BAD,
∴AD是∠BAC的平分線;
(Ⅱ)由(Ⅰ)知,△ABE∽△BDE,
AE
BE
=
AB
BD
,
在△BCD中,∠BCD=∠CBD,
∴BD=CD,
AE
BE
=
AB
CD

∴AB•BE=AE•CD.
點(diǎn)評:本題考查與圓有關(guān)的比例線段,考查三角形相似的判斷與運(yùn)用,難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的各項(xiàng)都為正數(shù),且以a1+a2>2a3,則公比q的取值范圍是( 。
A、(0,
1
2
B、(
1
2
,1)
C、(0,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程lnx=mx,x∈(0,a),若存在a,m,使此方程有兩個(gè)不同的實(shí)數(shù)解,則稱實(shí)數(shù)對(a,m)為此方程的“D-S-P”,則在(
1
2
,-
1
e
),(
e
,
1
3
e
),(2e,
2ln2
e
),(e2,
5
2e2
)中,“D-S-P”點(diǎn)有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-5x+m的兩個(gè)不等零點(diǎn)均大于1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于圓O,∠A的平分線交BC于點(diǎn)D,交外接圓于點(diǎn)E,求證:AD2=AB•AC-BD•DC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-
x
2
 
+2x

(1)求函數(shù)f(x)的定義域;
(2)若0<x1<x2<1,試比較
f(x1)
x1
f(x2)
x2
的大小;
(3)設(shè)g(x)=f(x)-kx-2,若函數(shù)g(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+ln
ax+1
2
(a>0)

(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若對任意a∈(1,2),總存在x0∈[
1
2
,1]
,使不等式f(x0)>k(1-a2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln
x
a
,g(x)=
x-a
ax
,a>0.
(1)若曲線y=f(x)在(1,f(1))處的切線方程為x-y-1=0,求a的值;
(2)證明:當(dāng)x>a時(shí),f(x)的圖象始終在g(x)的圖象的下方;
(3)當(dāng)a=1時(shí),設(shè)曲線C:h(x)=f(x)-e[1+
x
•g(x)](e為自然對數(shù)的底數(shù)),h′(x)表示h(x)的導(dǎo)函數(shù),求證:對于曲線C上的不同兩點(diǎn)A(x1,y1),B(x2,y2),x1<x2,存在唯一的x0∈(x1,x2),使直線AB的斜率等于h′(x0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=y,直線l與拋物線C交于A、B不同兩點(diǎn),且
OA
+
OB
=(p,6).
(1)求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)設(shè)直線m為線段AB的中垂線,請判斷直線m是否恒過定點(diǎn)?若是,請求出定點(diǎn)坐標(biāo);若不是,請說明理由;
(3)記點(diǎn)A、B在x軸上的射影分別為A1、B1,記曲線E是以A1B1為直徑的圓,當(dāng)直線l與曲線E的相離時(shí),求p的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案