(本小題滿分12分)

如圖1,在三棱錐P-A.BC中,PA.⊥平面A.BC,A.C⊥BC,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖2所示.

(1) 證明:A.D⊥平面PBC;

(2) 求三棱錐D-A.BC的體積;

(3) 在∠A.CB的平分線上確定一點(diǎn)Q,使得PQ∥平面A.BD,并求此時(shí)PQ的長(zhǎng).

 

【答案】

(1)見解析

(2)   ;

(3)

【解析】本題考查由三視圖求面積、體積,直線與平面平行的性質(zhì),直線與平面垂直的判定,考查空間想象能力,邏輯思維能力,計(jì)算能力,是中檔題

(Ⅰ)證明AD垂直平面PBC內(nèi)的兩條相交直線PC、BC,即可證明AD⊥平面PBC;

(Ⅱ)求出三棱錐的底面ABC的面積,求出高BC,再求三棱錐D-ABC的體積;

(Ⅲ)取AB的中點(diǎn)O,連接CO并延長(zhǎng)至Q,使得CQ=2CO,點(diǎn)Q即為所求,證明PQ平行平面ABD內(nèi)的直線OD,即可證明PQ∥平面ABD,在直角△PAQ中,求此時(shí)PQ的長(zhǎng).

(2)      

…… 8分

(3)取A.B的中點(diǎn)O,連接CO并延長(zhǎng)至Q,使得CQ=2CO,連接PQ,OD,點(diǎn)Q即為所求.

因?yàn)镺為CQ的中點(diǎn),D為PC的中點(diǎn),  PQ∥OD,

 PQ平面A.BD, OD平面A.BD        PQ∥平面A.BD

連接A.Q,BQ,

四邊形A.CBQ的對(duì)角線互相平分, 且A.C=BC,A.CBC,   

四邊形A.CBQ為正方形,CQ即為∠A.CB的平分線       

A.Q=4,PA.平面A.BC 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案