【題目】如圖,在四棱錐中, , , ,平面底面, ,
和分別是和的中點,求證:
(1)平面;
(2);
(3)平面平面.
【答案】(1)見解析(2)見解析(3)見解析
【解析】試題分析:(1)由已知得ABCD是平行四邊形,從而AD∥BE,又AD平面PAD,BE不在平面PAD內,即可證得BE∥平面PAD;
(2)根據面面垂直的性質可得PA⊥平面ABCD,故而PA⊥BC;
(3)先證CD⊥平面PAD得出CD⊥PD,故而CD⊥EF,再證四邊形ABED是矩形得出CD⊥BE,從而CD⊥平面BEF,于是平面BEF⊥平面PCD.
試題解析:
(1)∵AB∥CD,CD=2AB,E是CD的中點,
∴四邊形ABED為平行四邊形,
∴BE∥AD.
又AD平面PAD,BE不在平面PAD內,
∴BE∥平面PAD.
(2)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴PA⊥平面ABCD.
∵BC平面ABCD
∴PA⊥BC
(3)在平行四邊形ABED中,AB⊥AD,
∴ABED為矩形,
∴BE⊥CD ①.
由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD
∴AB⊥平面PAD,
∴CD⊥平面PAD,
∴CD⊥PD.
∵E、F分別為CD和PC的中點,可得EF∥PD,
∴CD⊥EF ②.
而EF和BE是平面BEF內的兩條相交直線,故有CD⊥平面BEF.
∵CD平面PCD,
∴平面BEF⊥平面PCD.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=alnx﹣x2+1. (Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實數a和b的值;
(Ⅱ)討論函數f(x)的單調性;
(Ⅲ)若a<0,且對任意x1 , x2∈(0,+∞),x1≠x2 , 都有|f(x1)﹣f(x2)|>|x1﹣x2|,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知線段的端點,端點在圓上運動
(Ⅰ)求線段的中點的軌跡方程.
(Ⅱ) 設動直線與圓交于兩點,問在軸正半軸上是否存在定點,使得直線與直線關于軸對稱?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,函數恰有兩個不同的零點,求實數的值;
(2)當時,
① 若對于任意,恒有,求的取值范圍;
② 若,求函數在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(文科)設函數f(x)=x2﹣2ax﹣8a2(a>0),記不等式f(x)≤0的解集為A.
(1)當a=1時,求集合A;
(2)若(﹣1,1)A,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數.
(Ⅰ)當時,解不等式;
(Ⅱ)若關于的方程的解集中恰有一個元素,求的取值范圍;
(Ⅲ)設,若對任意,函數在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將名學生分成兩組參加城市綠化活動,其中組布置盆盆景, 組種植棵樹苗.根據歷年統(tǒng)計,每名學生每小時能夠布置盆盆景或者種植棵樹苗.設布置盆景的學生有人,布置完盆景所需要的時間為,其余學生種植樹苗所需要的時間為(單位:小時,可不為整數).
⑴寫出、的解析式;
⑵比較、的大小,并寫出這名學生完成總任務的時間的解析式;
⑶應怎樣分配學生,才能使得完成總任務的時間最少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com