設(shè)向量,若表示向量的有向線段首尾相接能構(gòu)成三角形,則向量   
【答案】分析:向量4、3-2、的有向線段首尾相接能構(gòu)成三角形則一定有4+(3-2)+=0,將向量,代入即可求出向量
解答:解:4=(4,-12),3-2=(-8,18),
設(shè)向量=(x,y),
依題意,得4+(3-2)+=0,
所以4-8+x=0,-12+18+y=0,
解得x=4,y=-6,
故答案為:(4,-6).
點評:本題主要考查向量的坐標運算.屬基礎(chǔ)題.解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

5、設(shè)向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向線段首尾相連能構(gòu)成四邊形,則向量d為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們把一系列向量
ai
(i=1,2,…,n)
按次序排成一列,稱之為向量列,記作{
an
}
.已知向量列{
an
}
滿足:
a1
=(1,1),
an
=(xn,yn)=
1
2
(xn-1-yn-1,xn-1+yn-1)(n≥2)
,.
(1)證明數(shù)列{
|an
|}
是等比數(shù)列;
(2)設(shè)θn表示向量
an-1
an
間的夾角,求證cosθn是定值;
(3)若bn=2nθn-1,Sn=b1+b2+…+bn,求
lim
n→∞
bnSn2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD中,E,F(xiàn)分別為AC、BD的中點,設(shè)向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ),且
AB
=2
b
-
a
,
CD
=2k
c
+
a

(1)若
a
b
-2
c
垂直,求tan(α+β)的值;
(2)試用
AB
、
 CD
表示
EF

(3)若β為自變量,求|
EF
|的最小值f(k).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)向量
a
=(mx+m-1,-1)
,
b
=(x+1,y)
,m∈R,且
a
b

(1)把y表示成x的函數(shù)y=f(x);
(2)若tanA,tanB是方程f(x)+2=0的兩個實根,A,B是△ABC的兩個內(nèi)角,求tanC的取值范圍.

查看答案和解析>>

同步練習冊答案