如圖,在三棱錐中,,,點(diǎn)分別是的中點(diǎn),底面

(1)求證:平面;

(2)當(dāng)時(shí),求直線與平面所成角的余弦值;

(3)當(dāng)為何值時(shí),在平面內(nèi)的射影恰好為的重心?

 

【答案】

解:(1)證明:平面,

為原點(diǎn),建立如圖所示空間直角坐標(biāo)系

設(shè),則

設(shè),則

的中點(diǎn),

,

平面

(2),即,,

可求得平面的法向量

設(shè)與平面所成的角為,則

與平面所成的角為

(3)的重心,,

平面,

,

,即

反之,當(dāng)時(shí),三棱錐為正三棱錐.

在平面內(nèi)的射影為的重心.

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐中,,,

(Ⅰ)求證;

(Ⅱ)求二面角的大小;

(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣西玉林市高二下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形,,中點(diǎn).

 (Ⅰ)證明:平面

(Ⅱ)求二面角的余弦值.    (本題12分)

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省臺(tái)州市高三上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題

如圖,在三棱錐中, 兩兩垂直且相等,過(guò)的中點(diǎn)作平面,且分別交,交的延長(zhǎng)線于

(Ⅰ)求證:平面

(Ⅱ)若,求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011---2012學(xué)年四川省高二10月考數(shù)學(xué)試卷 題型:解答題

如圖:在三棱錐中,已知點(diǎn)、分別為棱、的中點(diǎn).

(Ⅰ)求證:∥平面;

(Ⅱ)若,,求證:平面⊥平面.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省2013屆高一下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

如圖,在三棱錐中,中點(diǎn)。(1)求證:平面

(2)在線段上是否存在一點(diǎn),使二面角的平面角的余弦值為?若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案