【題目】已知過點的直線l與拋物線E)交于B,C兩點,且A為線段的中點.

1)求拋物線E的方程;

2)已知直線與直線l平行,過直線上任意一點P作拋物線E的兩條切線,切點分別為M,N,是否存在這樣的實數(shù)m,使得直線恒過定點A?若存在,求出m的值;若不存在,說明理由.

【答案】(1);(2)存在實數(shù)使得命題成立

【解析】

(1)直線方程與拋物線方程聯(lián)立,借助韋達定理即可求得,得出拋物線方程;

(2)M,N點的坐標分別為,,直線上任意一點,由,利用導數(shù)的幾何意義可得點M處的切線方程和點N處的切線方程,由都滿足上述兩個方程,即有可得直線的方程即為:,代入即可得出存在實數(shù)使得命題成立.

1)由,

依題意,.

故拋物線E的方程為:.

2)設MN點的坐標分別為,,直線上任意一點,

,可得點M處的切線的方程為:,

N處的切線的方程為:

都滿足上述兩個方程,∴

∴直線的方程為:

∵直線恒過定點,∴,得,

故存在實數(shù)使得命題成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點.

1)求證:平面;

2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在日常生活中,石子是我們經(jīng)常見到的材料,比如在各種建筑工地或者建材市場上常常能看到堆積如山的石子,它的主要成分是碳酸鈣.某雕刻師計劃在底面邊長為2m、高為4m的正四棱柱形的石料中,雕出一個四棱錐和球M的組合體,其中O為正四棱柱的中心,當球的半徑r取最大值時,該雕刻師需去除的石料約重___________kg.(最后結果保留整數(shù),其中,石料的密度,質(zhì)量

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為

(1)求橢圓的方程;

(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點的直線l與拋物線E)交于B,C兩點,且A為線段的中點.

1)求拋物線E的方程;

2)已知直線與直線l平行,過直線上任意一點P作拋物線E的兩條切線,切點分別為M,N,是否存在這樣的實數(shù)m,使得直線恒過定點A?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,側(cè)面ABB1A1是邊長為2的菱形,且CACB1.

1)證明:面CBA1⊥面CB1A

2)若∠BAA160°,A1CBCBA1,求點C到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,摩天輪的半徑,它的最低點距地面的高度忽略不計.地上有一長度為的景觀帶,它與摩天輪在同一豎直平面內(nèi),且.從最低點處逆時針方向轉(zhuǎn)動到最高點處,記.

1)當時,求點距地面的高度;

2)試確定的值,使得取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值為,且曲線x0處的切線與直線平行(其中e為自然對數(shù)的底數(shù)).

1)求實數(shù)a,b的值;

2)如果,且,求證:

查看答案和解析>>

同步練習冊答案