【題目】某中學(xué)的學(xué)生積極參加體育鍛煉,其中有96%的學(xué)生喜歡足球或游泳,60%的學(xué)生喜歡足球,82%的學(xué)生喜歡游泳,則該中學(xué)既喜歡足球又喜歡游泳的學(xué)生數(shù)占該校學(xué)生總數(shù)的比例是(

A.62%B.56%

C.46%D.42%

【答案】C

【解析】

記“該中學(xué)學(xué)生喜歡足球”為事件,“該中學(xué)學(xué)生喜歡游泳”為事件,則“該中學(xué)學(xué)生喜歡足球或游泳”為事件,“該中學(xué)學(xué)生既喜歡足球又喜歡游泳”為事件,然后根據(jù)積事件的概率公式可得結(jié)果.

記“該中學(xué)學(xué)生喜歡足球”為事件,“該中學(xué)學(xué)生喜歡游泳”為事件,則“該中學(xué)學(xué)生喜歡足球或游泳”為事件,“該中學(xué)學(xué)生既喜歡足球又喜歡游泳”為事件,

,

所以

所以該中學(xué)既喜歡足球又喜歡游泳的學(xué)生數(shù)占該校學(xué)生總數(shù)的比例為.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面ABCD是梯形,且,,,,,,AD的中點為E,則四棱錐外接球的表面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線

(Ⅰ)求的方程;

(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于兩點,當(dāng)圓的半徑最長時,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱臺ABCDEF中,平面ACFD⊥平面ABC,∠ACB=ACD=45°,DC =2BC

I)證明:EFDB

II)求DF與面DBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為原點,拋物線的準(zhǔn)線與y軸的交點為HP為拋物線C上橫坐標(biāo)為4的點,已知點P到準(zhǔn)線的距離為5.

1)求C的方程;

2)過C的焦點F作直線l與拋物線C交于A,B兩點,若以AH為直徑的圓過B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面為正方形,PD⊥底面ABCD.設(shè)平面PAD與平面PBC的交線為l

1)證明:l⊥平面PDC;

2)已知PD=AD=1,Ql上的點,求PB與平面QCD所成角的正弦值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為直角梯形,AB//CD,是以為斜邊的等腰直角三角形,且平面平面ABCD,點F滿足,.

1)試探究為何值時,CE//平面BDF,并給予證明;

2)在(1)的條件下,求直線AB與平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】發(fā)展“會員”、提供優(yōu)惠,成為不少實體店在網(wǎng)購沖擊下吸引客流的重要方式.某連鎖店為了吸引會員,在2019年春節(jié)期間推出一系列優(yōu)惠促銷活動.抽獎返現(xiàn)便是針對“白金卡會員”、“金卡會員”、“銀卡會員”、“基本會員”不同級別的會員享受不同的優(yōu)惠的一項活動:“白金卡會員”、“金卡會員”、“銀卡會員”、“基本會員”分別有4次、3次、2次、1次抽獎機(jī)會.抽獎機(jī)如圖:抽獎?wù)叩谝淮伟聪鲁楠勬I,在正四面體的頂點出現(xiàn)一個小球,再次按下抽獎鍵,小球以相等的可能移向鄰近的頂點之一,再次按下抽獎鍵,小球又以相等的可能移向鄰近的頂點之一……每一個頂點上均有一個發(fā)光器,小球在某點時,該點等可能發(fā)紅光或藍(lán)光,若出現(xiàn)紅光則獲得2個單位現(xiàn)金,若出現(xiàn)藍(lán)光則獲得3個單位現(xiàn)金.

1)求“銀卡會員”獲得獎金的分布列;

2表示第次按下抽獎鍵,小球出現(xiàn)在點處的概率.

,,的值;

寫出關(guān)系式,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點的直線交于,兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案