考點:數(shù)列的求和,數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)log3an,log3an+1是方程x2-(2n-1)x+bn=0的兩個實根,由根與系數(shù)的關(guān)系和對數(shù)的運算性質(zhì)能求出a2,b1的值.
(Ⅱ)由已知條件推導出數(shù)列{an}的奇數(shù)項和偶數(shù)項分別是公比為9的等比數(shù)列,分別寫出奇數(shù)項和偶數(shù)項和通項公式,從而能求出數(shù)列{an}的通項公式.
(Ⅲ)此題的關(guān)鍵是求數(shù)列{bn}的通項公式,求出這個通項公式后利用基本不等式能推導出An<Bn.
解答:
解:(1)∵正項數(shù)列{a
n}中,a
1=1,
log
3a
n,log
3a
n+1是方程x
2-(2n-1)x+b
n=0的兩個實根,
∴l(xiāng)og
3a
n+log
3a
n+1=2n-1,log
3a
n•log
3a
n+1=b
n,
∴a
na
n+1=3
2n-1,
當n=1時,a
1a
2=3,∵a
1=1,∴a
2=3.
∴b
1=log
3a
1•log
3a
2=log
31•log
33=0.
(Ⅱ)∵
=
=9,∴
=9,
∴{a
n}的奇數(shù)項和偶數(shù)項分別是公比為9的等比數(shù)列,
∴a
2k-1=
a1•9k-1=3
2k-2,
a
2k=
a2•9k-1=3
2k-1,(k∈N
*)
∴a
n=
| 3n-1,n為奇數(shù) | 3n-1,n為偶數(shù) |
| |
=3
n-1,n∈N
*.
(Ⅲ)∵b
n=log
3a
n•
log3 an+1 =(n-1)n,n∈N
*,
∴
cn=,
當n=1時,A
1=c
1=0,
B1 =0,A
1=B
1,
當n≥2時,c
n=
<
,
An<0+++…+=
=B
n.
綜上,當n=1時,A
n=B
n;當n≥2時,A
n<B
n.
點評:本題考查數(shù)列的通項公式的求法,考查前n項和的比較,解題時要認真審題,注意構(gòu)造法的合理運用.