D
分析:由導(dǎo)函數(shù)可求原函數(shù)f(x),判斷函數(shù)f(x)單調(diào)性和奇偶性,利用奇偶性將不等式f(x-2)+f(x
2-2x)>0轉(zhuǎn)化成f(x-2)>f(2x-x
2),利用單調(diào)性去掉函數(shù)符號(hào)f 即可解得所求,注意自變量本身范圍.
解答:f'(x)=x
2+2cosx
知f(x)=
x
3+2sinx+c而f(0)=0,
∴c=0
即:f(x)=
x
3+2sinx
易知,此函數(shù)是奇函數(shù),且在整個(gè)區(qū)間單調(diào)遞增,
因?yàn)閒'(x)=x
2+2cosx在x∈(0,2)恒大于0
根據(jù)奇函數(shù)的性質(zhì)可得出,在其對(duì)應(yīng)區(qū)間上亦是單調(diào)遞增的f(x-2)+f(x
2-2x)>0
f(x-2)>-f(x
2-2x)
即:f(x-2)>f(2x-x
2)
∴
解得:x∈(2,1+
)
故選D.
點(diǎn)評(píng):本題主要考查了函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,以及函數(shù)的單調(diào)性和奇偶性,同時(shí)考查了計(jì)算能力,屬于中檔題.