【題目】已知點(diǎn)M(3,1),圓(x﹣1)2+(y﹣2)2=4.
(1)求過M點(diǎn)的圓的切線方程;
(2)若直線ax﹣y+4=0與圓相交于A、B兩點(diǎn),且弦AB的長為2 ,求a的值.

【答案】
(1)解:由圓的方程得到圓心(1,2),半徑r=2,

當(dāng)直線斜率不存在時(shí),方程x=3與圓相切;

當(dāng)直線斜率存在時(shí),設(shè)方程為y﹣1=k(x﹣3),即kx﹣y+1﹣3k=0,

由題意得: =2,

解得:k= ,

∴方程為y﹣1= (x﹣3),即3x﹣4y﹣5=0,

則過點(diǎn)M的切線方程為x=3或3x﹣4y﹣5=0;


(2)解:∵圓心到直線ax﹣y+4=0的距離d= ,

∴( 2+( 2=4,

解得:a=﹣


【解析】(1)由圓的方程找出圓心坐標(biāo)與半徑,分兩種情況考慮:若切線方程斜率不存在,直線x=3滿足題意;若斜率存在,設(shè)出切線方程,根據(jù)直線與圓相切時(shí)圓心到切線的距離d=r,求出k的值,綜上即可確定出滿足題意的切線方程;(2)由AB弦長,以及圓的半徑,利用點(diǎn)到直線的距離公式,根據(jù)垂徑定理及勾股定理列出關(guān)于a的方程,求出方程的解即可得到a的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線l:y=kx+ 與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,其首項(xiàng)分別為a1、b1 , 且a1+b1=5,a1 , b1∈N* , 設(shè)cn=a ,則數(shù)列{cn}的前10項(xiàng)和等于(
A.55
B.70
C.85
D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是(
A.當(dāng)x>0且x≠1時(shí),lgx ≥2
B.6 的最大值是2
C. 的最小值是2
D.當(dāng)x∈(0,π)時(shí),sinx ≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)數(shù).

(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);

(2)若函數(shù)的定義域內(nèi)不單調(diào)且在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(
A.如果兩條直線l1與l2垂直,那么它們的斜率之積一定等于﹣1
B.“a>0,b>0”是“ + ≥2”的充分必要條件
C.命題“若x=y,則sinx=siny”的逆否命題為真命題
D.“a≠﹣5或b≠5”是“a+b≠0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】口袋中裝有一些大小相同的紅球和黑球,從中取出2個(gè)球.兩個(gè)球都是紅球的概率是 ,都是黑球的概率是 ,則取出的2個(gè)球中恰好一個(gè)紅球一個(gè)黑球的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)若函數(shù)處取得極小值,設(shè)此時(shí)函數(shù)的極大值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】結(jié)合命題函數(shù)上是減函數(shù);命題函數(shù)的值域?yàn)?/span>.

(Ⅰ)若為真命題,求實(shí)數(shù)的取值范圍;

(Ⅱ)如果為真命題, 為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案