在長方體中,,中點(diǎn).(Ⅰ)證明:;(Ⅱ)求與平面所成角的正弦值;(Ⅲ)在棱上是否存在一點(diǎn),使得∥平面?若存在,求的長;若不存在,說明理由.

(Ⅰ)先證平面(Ⅱ)(Ⅲ)的長.

解析試題分析:(Ⅰ)證明:連接是長方體,∴平面,又平面 ∴    
在長方形中, ∴     
平面,    
平面      
(Ⅱ)如圖建立空間直角坐標(biāo)系,則

,  
設(shè)平面的法向量為,則    令,則  ,
       
所以 與平面所成角的正弦值為                
(Ⅲ)假設(shè)在棱上存在一點(diǎn),使得∥平面.
設(shè)的坐標(biāo)為,則 因?yàn)?nbsp;∥平面
所以 ,即, ,解得,        
所以 在棱上存在一點(diǎn),使得∥平面,此時的長
考點(diǎn):直線與平面垂直的判定;直線與平面所成的角.
點(diǎn)評:本小題主要考查空間線面關(guān)系、直線與平面所成的角、三角函數(shù)等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在矩形ABCD中,已知AB=3, AD=1, E、F分別是AB的兩個三等分點(diǎn),AC,DF相交于點(diǎn)G,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系:

(1)若動點(diǎn)M到D點(diǎn)距離等于它到C點(diǎn)距離的兩倍,求動點(diǎn)M的軌跡圍成區(qū)域的面積;
(2)證明:E G ⊥D F。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為正方形的中心,四邊形是平行四邊形,且平面平面,若.

(1)求證:平面.
(2)線段上是否存在一點(diǎn),使平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐中,底面,,,點(diǎn)的中點(diǎn).

(1)求證:側(cè)面平面;
(2)若異面直線所成的角為,且,
求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點(diǎn),且.證明:平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,中,側(cè)棱與底面垂直,,,點(diǎn)分別為的中點(diǎn).

(1)證明:;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形
(1)求證:; (2)求證:;
(3)設(shè)中點(diǎn),在邊上找一點(diǎn),使平面,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四棱錐的底面為等腰梯形,,,垂足為是四棱錐的高。

(Ⅰ)證明:平面 平面
(Ⅱ)若,60°,求四棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,底面是邊長為2的正方形,,且,中點(diǎn).

(Ⅰ)求證:平面;    
(Ⅱ)求二面角的大小;
(Ⅲ)在線段上是否存在點(diǎn),使得點(diǎn)到平
的距離為?若存在,確定點(diǎn)的位置;
若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案