【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的質量指標值,由測量結果得到如圖所示的頻率分布直方圖,質量指標值落在區(qū)間內的頻率之比為

(1)求這些產(chǎn)品質量指標值落在區(qū)間內的頻率;

(2)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機抽取3件,記這3件產(chǎn)品中質量指標值位于區(qū)間內的產(chǎn)品件數(shù)為,求的分布列與數(shù)學期望.

【答案】(;(.

【解析】試題分析:(1)由題意,質量指標值落在區(qū)間, 內的頻率之和,利用之比為,即可求出這些產(chǎn)品質量指標值落在區(qū)間內的頻率;(2)求出每件產(chǎn)品質量指標值落在區(qū)間內的概率為,利用題意可得:,根據(jù)概率分布知識求解即可.

試題解析:(1)設區(qū)間內的頻率為,則區(qū)間內的頻率分別為

依題意得解得

所以區(qū)間內的頻率為;

2)從該企業(yè)生產(chǎn)的該種產(chǎn)品中隨機抽取件,相當于進行了次獨立重復試驗,

所以服從二項分布,其中

由(1)得,區(qū)間內的頻率為

將頻率視為概率得

因為的所有可能取值為0,1,2,3,且

;

所以的分布列為:


0

1

2

3


0.064

0.288

0.432

0.216

所以的數(shù)學期望為,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校為評估新教改對教學的影響,挑選了水平相當?shù)膬蓚平行班進行對比試驗,甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時間后進行水平測試,成績結果全部落在區(qū)間內(滿分100分),并繪制頻率分布直方圖如圖所示,兩個班人數(shù)均為60人,成績80分及以上為優(yōu)良.

(1)根據(jù)以上信息填好聯(lián)表,并判斷出有多大的把握認為學生成績優(yōu)良與班級有關?

(2)以班級分層抽樣,抽取成績優(yōu)良的5人參加座談,現(xiàn)從5人中隨機選3人來作書面發(fā)言,求發(fā)言人至少有2人來自甲班的概率.

(以下臨界值及公式僅供參考)

, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為: (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求直角坐標系下曲線與曲線的方程;

(2)設為曲線上的動點,求點上點的距離的最大值,并求此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當時,若存在實數(shù)使得不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若曲線過點,求曲線在點處的切線方程;

2)求函數(shù)在區(qū)間上的最大值;

3)若函數(shù)有兩個不同的零點, ,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,部分對應值如下表,又知的導函數(shù)的圖象如下圖所示:

0

4

5

1

2

2

1

則下列關于的命題:

①函數(shù)的極大值點為2;

②函數(shù)上是減函數(shù);

③如果當時, 的最大值是2,那么的最大值為4;

④當,函數(shù)有4個零點.

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知圓的參數(shù)方程為為參數(shù)),若是圓軸正半軸的交點,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,設過點的圓的切線為.

(1)求直線的極坐標方程;

(2)求圓上到直線的距離最大的點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015年12月,京津冀等地數(shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點圖知具有線性相關關系,求關于的線性回歸方程;

的濃度;

(ii)規(guī)定:當一天內的濃度平均值在內,空氣質量等級為優(yōu);當一天內的濃度平均值在內,空氣質量等級為良,為使該市某日空氣質量為優(yōu)或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數(shù))

參考公式:回歸直線的方程是,其中, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程x2y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.

(1)求實數(shù)m的取值范圍;

(2)求該圓的半徑r的取值范圍;

(3)求圓心C的軌跡方程

查看答案和解析>>

同步練習冊答案