【題目】在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值為__________.
科目:高中數(shù)學 來源: 題型:
【題目】動圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動圓M的圓心的軌跡方程為( )
A. y2-12x+12=0 B. y2+12x-12=0
C. y2+8x=0 D. y2-8x=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎勵方案,試用數(shù)學語言表述該公司對獎勵函數(shù)f(x)模型的基本要求,并分析函數(shù)y= 是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y= 作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A={x|x2-ax+a2-19=0},B={ x|x2-5x+6=0},C={x|x2+2x-8=0},且(A∩B),A∩C=,求的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的右焦點為F(1,0),且點(﹣1, )在橢圓C上.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 恒成立?若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直三棱柱中,底面是邊長為2的正三角形, 是棱的中點,且.
(1)若點為棱的中點,求異面直線與所成角的余弦值;
(2)若點在棱上,且平面,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點與拋物線的焦點重合,且該橢圓的離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓的方程;
(2)設直線與橢圓相交于不同的兩點,已知點的坐標為,點在線段的垂直平分線上,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,D是AC的中點,A1D⊥平面ABC,AB=BC,平面BB1D與棱A1C1交于點E.
(1)求證:AC⊥A1B;
(2)求證:平面BB1D⊥平面AA1C1C;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com