等差數(shù)列{an}中,a1=1,a4=7,其前n項(xiàng)和sn=100,則n=


  1. A.
    12
  2. B.
    11
  3. C.
    10
  4. D.
    9
C
分析:由已知中等差數(shù)列{an}中,a1=1,a4=7,易求出數(shù)列的公差,進(jìn)而得到數(shù)列的前n項(xiàng)和公式,構(gòu)造關(guān)于n的方程,解方程即可求出n值.
解答:∵等差數(shù)列{an}中,a1=1,a4=7,
∴數(shù)列{an}的公差d==2
則Sn==n2,
由Sn=n2=100,解得n=10
故選C.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是等差數(shù)列的性質(zhì)、定義和前n項(xiàng)和公式,其中根據(jù)已知條件求出數(shù)列的公差及前n項(xiàng)和公式,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項(xiàng)和Sn<0時(shí),n的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項(xiàng)和S2n-1=38,則n等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習(xí)冊(cè)答案